Problem Solving in Mathematics

Day – 1 on 8 October 2014. QITEP in Mathematics, PPPPTK Yogyakarta
Differentiated Instruction For Senior High School Mathematics Teachers
Outline

- Problem
- Problem solving
- Problem based learning
- Heuristic plan/strategy or heuristics
- How students solve problem
- The problem with PBL
- How to create effective PBL
Where is my name tag?
What is her name?
I hope today I will be learning new material. What could it be?
Can I have my lunch break extended 15 minutes?
I could not access the internet.
What is a square-root of 100?
A question is categorised as a problem if it cannot be answered immediately using knowledge available at one’s disposal (or long term memory) and so has to be consciously worked out.
Suppose five days after the day before yesterday is Friday. What day of the week is tomorrow?
Problem solving has two aspects

(1) the *process*: a set of activities, and

(2) the *product*: the actual solution
an *ill-defined problem* has *multiple* acceptable products and *many possible ways* for reaching them,

a *well-defined problem* has only *one* possible product and *one* agreed process for reaching it
Do this:

- Write a mathematics problem solving on a piece of paper.
What Polya (1965) offers?

1. Understand the problem
2. Devise a plan
3. Carry out the plan
4. Look back
Schoenfeld (1979) offers:

1. Draw a diagram if at all possible
2. If there is an integer parameter, look for an inductive argument
3. Consider arguing by *contrapositive* or *contradiction*
4. Consider a similar problem with fewer variables
- **Contrapositive:**
 - Instead of proving the statement “If X is true, then Y is true,” you can prove the equivalent statement “If Y is false, then X must be false.”

- **Contradictions:**
 - Assume, for the sake of argument, that the statement you would like to prove is false. Using this assumption, go on to prove either that one of the given conditions in the problem is false, that something you know to be true is false, or that you wish to prove is true. If you can do any of these, you have proved what you want.
(1) identifying the problem,
(2) representing the problem,
(3) selecting an appropriate strategy,
(4) implementing the strategy, and
(5) evaluating solutions.
Understand the problem

- What is given
- What is unknown
- What operations are allowed
- Represent the problem
Devise a plan

- Determine a general course of attack
- Restate the problem (the unknown) so that it is more like a familiar problem
- Find a related problem
Carry out the plan

- Carry out the computations
- Carry out the need operations
Look back

- Look over the process you went through
- Try to see how this experience can be helpful in solving other problems
1. Read and think
2. Explore and plan
3. Select a strategy
4. Find an answer
5. Reflect and extend

Krulik (1995)
1. Read and think

- Identify the fact
- Identify the question
- Visualise the situation
- Describe the setting
- Restate the action
2. Explore and plan

- Organise the information
- Is there sufficient information
- Is there too much information
- Draw a diagram or construct a model
- Make a chart, a table, a graph, or a drawing
3. Select a strategy

- Pattern recognition
- Working backwards
- Guess and test
- Simulation or experimentation
- Reduction./expansion
- Organised listing/exhaustive listing
- Logical deduction
- Divide and conquer
4. Find an answer

- Estimate
- Use computational skills
- Use algebraic skills
- Use geometric skills
- Or calculator if it may
5. Reflect and extend

- Check your answer
 - Is the computation correct?
 - Is the question answered?
 - Is the answer reasonable?
- Find alternate solutions
- What is....?
- Extend to either:
 - A generalisation or
 - A mathematical concept
- Discuss the solutions
- Create interesting variations on the original problem
Problem Based Learning

- Anybody knows what it is?
Teaching component skills
 general problem solving strategy

Teaching within specific domain
 specific problem solving strategy
For Gilda’s party, the Hoagie House prepared a huge sub sandwich of a 7-foot long Italian roll. Gilda wants to feed 16 friends. How many cuts must she make?
HEURISTIC (RULE OF THUMBS)
“General problem solving strategy”

- Pattern recognition
- Working backwards
- Guess and test
- Simulation or experimentation
- Reduction./expansion
- Organised listing/exhaustive listing
- Logical deduction
- Divide and conquer
Problem 4: Two points on the surface of the unit sphere (in 3-space) are connected by an arc A which passes through the interior of the sphere. Prove that if the length of A is less than 2, then there is a hemisphere H which does not intersect A.

Problem 5: Let a, b, and c be positive real numbers. Show that not all three of the terms $a(1 - b)$, $b(1 - c)$, and $c(1 - a)$ can exceed $\frac{1}{4}$.
The main purpose of learning through problem solving

- Schema construction and automation
- Transfer knowledge to new/advanced problem solving
Cognitive approach on learning process

Instructional manipulation

Learners characteristics

Learning process

Learning outcomes

Outcome Performance
Instructional manipulations

The sequence of external events including the organisation and content of instructional materials and behaviors of the teacher.

This includes what is taught, how it is taught and depends on the characteristics of the teacher and on the curriculum.
Learner characteristics

The learner’s existing knowledge, including facts, procedures and strategies that may be required in the learning situation.

The nature of the learner’s memory system, including its capacity and mode of representation in memory.
Cognitive approach on learning process

Instructional manipulation

Learning process

Learning outcomes

Outcome Performance

Learners characteristics
Outcomes

- **Learning outcomes**
 - The cognitive changes in the learner’s knowledge or memory system, including newly acquired facts, procedures and strategies

- **Outcome performance**
 - The learner’s performance & behaviour on tests that measure the amount of retention or the ability to transfer knowledge to new learning tasks
Two main points on learning process:

- Learner centered approach
 - Learner characteristics
 - Learning process and outcomes
 - Instructional manipulations affects changes in the learner’s knowledge
- Learner is an active information processor
 - Knowledge is constructed by learner
 - HOW AND WHERE IS KNOWLEDGE IS CONSTRUCTED?
SELECTING PATTERN RECOGNITION LEARNING PROCESS: organise information, build connection, construct knowledge
STEPS ON SENSORY MEMORY

- ATTENTION AND PERCEPTION
- PATTERN RECOGNITION

PRIOR KNOWLEDGE
CONTEXT
LEARNING PROCESS: organise information, build connection among information and integration with prior knowledge, and eventually construct knowledge, encode knowledge to LTM.
It is really confusing!!!
HALF FULL

HALF EMPTY
PERCEPTION

- The assignment of meaning to incoming stimuli
 - Is the detection of incoming stimuli by your senses
 - Is the process by which stimuli are perceived, recognised and understood
Steps of perception

Detection of a stimuli through senses

Storage of some representation of the stimuli in memory system

Pattern recognition

Assignment of meaning to stimuli
Example: steps of perception

Detection of a stimuli through senses: stimulus may be seen/heard

Storage of some representation of the stimuli in memory system: stored these into icon/echo

Pattern recognition: circle/writing/sound information from LTM used to recognise pattern

Assignment of meaning to stimuli: select information to assign meaning that is undertaken in working memory
PERCEPTION IS AFFECTED BY

- Nature of stimulus (context of stimulus)
- Background of knowledge
- Pattern recognition occurs when elements match!!
LEARNING PROCESS:
organise information, build connection among information and integration with prior knowledge,
and eventually construct knowledge, encode knowledge to LTM

SELECTING

PATTERN RECOGNITION
ATTENTION

Allocation of cognitive resources to a task

Critical for learning – to process information learners have to pay attention

BUT

Human’s have extremely limited processing capacity!
Limitations

- Generally people cannot attend to more than a few things at once.
- Under many conditions multi-tasking is not very effective because attention is divided too much, leading to poor executions of tasks (divided attention).
- Automation of skills can compensate for limited attention capacity.
Attention Allocation

- The type of TASK influences attention allocation
 - Nature of task
 - Nature of need
 - Motivations
- Attention is allocated differently according to the tasks provided
RESOURCE LIMITED

A task where performance will improve if more attention is shifted to that task

CONCENTRATION

DATA-LIMITED

Performance is limited by the quality of the presented task

Some tasks are so complex that some individuals can never apply enough resources to them because of lack of knowledge
Students are easily distracted
 - Teacher is giving important explanations, students mind starts to ‘wander’ –tuning in to other conversations (sounds), looking out the window (visuals), thinking of other matters (internal cognition)….etc

 - Concentration is dependant on attention
Pattern recognition

- Prior knowledge used to make decisions about the meaning of the stimuli
- When stimuli in the environment are recognised as something stored in memory
- Two systems for recognising patterns:
 - Parts to whole (Example?)
 - Whole to parts (Example?)

Theory of pattern recognition (??!!??)
Gestalt theory (PLEASE SEARCH)
PRIOR KNOWLEDGE

- Directly affects perception process
- Allows perception occurs
- Guides perception of new information
EXAMPLE

THE CAT

OPEN DCCR
LEARNING PROCESS: organise information, build connection among information and integration with prior knowledge, and eventually construct knowledge, encode knowledge to LTM
Working memory?

- What is in your mind now?
Working memory

- Repeat a telephone number
- Repeat an unfamiliar foreign word
- $12 + 13 = ?$
- $314343543 + 89786592 = ?$
Working memory

- What have you been doing just before this?
- Close your eyes and pick up an object in front of you.
- How many windows in your house?
Limited in capacity

- Miller’s research: the magic number of seven (7±2 chunks of new meaningful information)
- Cowan’s research: 4±1 chunks of new information to be processed

Limited in duration

- Recalls decay over time unless actively rehearsal occurs
- Information lost very rapidly when people are distracted from rehearsing
- Forgetting occurs due to interference (of new information) rather than time
Instructional implication of working memory properties?

- Keep it simple, do not overload working memory
- Draw attention to most important points
- Present information using different modalities (e.g., visual and auditory)
Working memory can be

- Processing “unlimited” amount of information that is already familiar.

- Give example!
LEARNING PROCESS:
organise information, build connection among information and integration with prior knowledge, and eventually construct knowledge, encode knowledge to LTM
Long term memory

- Unconscious component of our memory
- Unlimited capacity and duration
- Where cognitive structures are organised

- Explicit memory
 - Conscious recall, recognition of previous knowledge/information/experience

- Implicit memory
 - No record of previously remembering events
 - Retention without remembering
Schemata

- LTM is actively constructed using schemata
- Activated schemata determine what incoming information is relevant
- Schemata are continually reconstructed through learning
PIAGET’S THEORY

- **ASSIMILATION**
 - New information that fits into an existing schema is added

- **ACCOMODATION**
 - Existing schemata are modified in the face of new, conflicting information
Things to reanimate before problem solving?
The main purpose of learning through problem solving

- Schema construction and automation
- Transfer knowledge to new/advanced problem solving
AUTOMATED PROCESSING

- Occurs without intention and consciousness
- Less cognitive effort
- Less error
- Performance is quicker
- Automated performance
- Develop learning – to more difficult task
- Skilled learners
Expert vs. Novice problem solver

- The amount of schema constructed in LTM
- The amount of automated schemas
Goal-free problem

Goal free problems discourage students from creating sub-goals and separate the problem state and the problem goal because the problem goal is not given.

Instead, students are required to work forward from given information in order to assist schema construction.
Can you please give an example of goal-free problems?
Anybody knows what it is?

And, what research says about this?
Learning from Examples

Examples:
(1) $x^2 + 5x + 6 = (x + 2)(x + 3)$
(2) $x^2 + 7x + 6 = (x + 1)(x + 6)$
(3) $x^2 + 8x + 12 = (x + 2)(x + 6)$
(4) $x^2 + 7x + 12 = (x + 3)(x + 4)$
(5) $x^2 + 13x + 12 = (x + 1)(x + 12)$

Exercises:
(1) $x^2 + 11x + 18 = (\quad) (\quad)$
(2) $x^2 + 9x + 18 = (\quad) (\quad)$
(3) $x^2 + 19x + 18 = (\quad) (\quad)$
Zhu and Simon (1997)

Learning by Doing

Problems: Identical with examples for learning-from-examples section except that right-hand sides of equations are shown as:

\[\text{=} (x + ___) (x + ___) \]

Exercises: Identical with exercises for learning-from-example section.
PBL vs. WEBL

- What research says about this comparison?
- Expertise reversal effect?
Various instructions based WE

- WE only
- Pairing WE and similar PS
- Faded WE
How To Create Effective WE?

- Self-explanation effect
- Split attention effect
- Redundancy effect
- Modality effect
- Expertise reversal effect
Things to consider:

- Process oriented or product oriented
- Multiple or uniform solutions
- Individual or group learning
Problem: Find the value of x and give reasons for each step.

Solution:

\[x^\circ = 180^\circ - 54^\circ = 126^\circ \] (adjacent angles on a straight line sum to 180°)

Problem: Find the value of x and give reasons for each step.

Solution:
Problem: Find the value of x and give reasons for each step.

Solution:

1. $\angle ACD = 360^\circ - 300^\circ = 60^\circ$

 Reason: angles formed by lines running to the same point sum to 360°

2. $\angle BAC = 180^\circ - \angle ACD = 180^\circ - 60^\circ = 120^\circ$

 Reason: cointerior angles between parallel lines sum to 180°

3. Therefore, $x = 120^\circ$
Problem: Find the value of x and give reasons for each step.

Solution:

1. $360° - 300° = 60°$ (angles formed by lines running to the same point sum to $360°$)

2. $x° = 180° - 60° = 120°$ (co-interior angles between parallel lines sum to $180°$)
A car moving from rest reaches a speed of 20 m/s after 10 seconds. What is the acceleration of the car?

\[u = 0 \text{ m/s} \]
\[v = 20 \text{ m/s} \]
\[t = 10 \text{ s} \]

\[v = u + at \]
\[a = (v - u)/t \]
\[a = (20 - 0)/10 \]
\[a = 2 \text{ m/s}^2 \]
A car moving from rest \((u)\) reaches a speed of \(20\text{ m/s} (v)\) after 10 seconds \((t)\): \[v = u + at, \quad a = \frac{(v - u)}{t} = \frac{(20 - 0)}{10} = 2 \text{ m/s}^2\]. What is the acceleration of the car?
YOUR TASK.

- Practive improving problem solving based instruction