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Abstract--   We have used Monte Carlo technique by employing 

the Wang-Warner simple cubic lattice model to study the 

influence of magnetic field on nematic-isotropic phase transition 

of liquid crystals. This is shown in phase diagrams involving 

energy per site, orientational order parameter and specific heat 

as function of temperature. We find that in the absence of 

magnetic field, the nematic-isotropic phase transition is a strong 

first order transition. Upon increasing the strength of magnetic 

field, the jump of first order phase transition becomes small and 

in a critical magnetic field ( 30,hc  ), the phase transition 

changes becoming the second order. For fields larger than ch  

there is no phase transition and the nematic and paranematic 

phases are indistinguishable. 

 

Index Term-- phase transition, liquid crystal, magnetic field, 

Monte Carlo technique, Wange-Warner simple cubic lattice 

  

 

1. INTRODUCTION 

According to common wisdom, there are three basic 

states of matter, solid, liquid, and gaseous states. However, 

this is not generally true.  Now, there exist other new states of 

matter in nature, such as the liquid crystal state, plasma state, 

amorphous solid, superconductor, neutron state, etc. [1, 2]. 

Liquid crystals are wonderful materials that they exhibit 

intermediate state between liquid and solid (crystal). They 

possess some typical properties of liquid as well as solid 

states. Crystalline materials or solids are materials 

characterized by strong positional order and orientational 

order. The positional and orientational orders have low values 

for liquids. The liquid crystal phase is a mesophase, which 

occurs in the transition from solid to liquid (isotropic). As a 

result, positional order and orientational order of liquid 

crystals have values between solids and liquids [3, 4]. There 

are three distinct types of liquid crystals accordance with 

physical parameters controlling the existence of the liquid 

crystalline phases: thermotropic, lyotropic and polymeric. The 

most widely used liquid crystals, and extensively studied are 

thermotropic liquid crystals [5]. Their liquid crystalline phases 

controlled by temperature. The three main classes of 

thermotropic liquid crystals are: nematic, smectic and 

cholesteric. The nematic phase is the simplest of liquid crystal 

phase. In this phase the molecules maintain a preferred 

orientational direction as they diffuse throughout the sample. 

There exists orientational order, but no positional order [6]. 

The orientation of nematic liquid crystals can be controlled by 

an external fields, particularly electric or magnetic fields [7]. 

If an external field is applied on the nematic liquid crystals, 

then the evolution of order parameter can be occurred [8]. So, 

it is important to understand how is the effect of magnetic 

field on phase transition of nematic liquid crystals. 

In recent years rapid advances in the speed of computers 

has led to the increased use of molecular simulation as a tool 

to understand complex systems. In the complex systems, such 

as liquid crystals, simulation is often difficult, with subtle 

changes in intermolecular forces leading to changes in phase 

behaviour. Moreover, in the case of liquid crystals many 

properties of interest arise from specific ordering of molecules 

(or parts of molecules) in the bulk; and so can only be studied 

by simulation of many molecules. Despite these difficulties 

the progress in molecular simulation has been rapid [9]. In 

computer simulation, a very popular method to solve the 

complex system under equilibrium states is Monte Carlo 

method. This method is applicable for complex systems with 

characteristics: large number of components, many 

interactions, large parameter space, uncertainty in value of 

parameters, and uncertainty in outcomes, while deterministic 

method is failed.  

A number of different types of simulation model have 

been developed for modeling liquid crystal systems, i.e. lattice 

models, coarse-grained single site models based on hard and 

soft interaction potentials, atomistic models and multi-site 

coarse-grained models [9]. Possibly the simplest model is a 

lattice model. This model is based on the spin-models of 

classical physics. Here, a molecule director or local director is 

assumed a spin. Its component has three directions in 

Cartesian axes, i.e.   x, y, and z directions. These can be used 

to represent a molecule (or cluster of molecules), which 

interact with neighboring spins through a simple interaction 

potential, especially Lebwohl – Lasher potential. Although, a 

lattice model is the simplest, but some researchers have been 

used it in some liquid crystal systems models [10, 11, 12, 13]. 

The Wang-Warner simple cubic lattice model is one of the 

alternatives lattice model in which local director or spin at site 
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lattice has three possibilities values, i.e. spin up (+1), spin 

down (-1) and spin horizontal or perpendicular (0). The 

nearest neighboring spin has six orientation possibilities in 

three-dimensional space. The six orientation possibilities are: 

one spin is up (+1), one spin is down (-1) and four spins are 

perpendicular (0) [1].  

In this paper, we want to understand the effect of 

magnetic field on nematic-isotropic phase transition of liquid 

crystal. We use Metropolis Monte Carlo technique and Wang-

Warner simple cubic lattice model to calculate and plot phase 

diagrams of energy per site, orientational order parameter, and 

specific heat as function of temperature in various magnetic 

fields. From the plots, we can unambiguously determine the 

change of phase transition.  

 

2. WANGE-WARNER CUBIC LATTICE MODEL OF 

LIQUID CRYSTAL 

In this model, we consider L x L x L cubic lattice with 

each lattice sites indexed by number i. Each lattice site holds a 

molecule director or local director (spin) denoted by a unit 

vector in̂ . The average of all local directors that indicates a 

liquid crystal alignment, usually called director, is denoted by 

a unit vector n̂  (see Fig. 1).  Each a unit vector in̂  has three 

possibilities values: 1 for spin-up, -1 for spin-down and 0 for 

spin-horizontal. The degree of liquid crystal alignment for a 

set of vector spins, in̂ , is measured via an order parameter [8, 

9]: 

(1)n)n( i                                                                                                       2  ˆPS

where  13 2
2  x(x)P

2
1  is the second Legendre 

polynomial and ...  is an average all the spins .  

In the 3D cubic lattice model, each spin in site lattice has 

six nearest neighboring spins denoted by a unit vector jn̂ . 

Figure 2 shows the six possibilities of spin directions  , i.e. 

1jn̂ , 2jn̂ , 3jn̂ , 4jn̂ , 5jn̂ , and 6jn̂ . The value of 

1jn̂  is 1,  2jn̂  is -1, 3jn̂ , 4jn̂ , 5jn̂   and 6jn̂  is 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The energy of interaction between spin on site and their 

nearest neighboring spins is modeled by Lebwohl-Lasher [7, 

8, 11]: 
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where 0J  is the strength of interaction and ij  indicates 

nearest neighbors only.  

As liquid crystals are anisotropic diamagnetisms, they 

align in magnetic field. The energy of interaction between spin 

clusters in̂  (molecular director of liquid crystals) and 

magnetic field is modeled by [5, 14]: 
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From Equation (2) and (3), the total energy of the systems 

(liquid crystals under magnetic field) is: 
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From thermodynamics, we know that the specific heat is 

related to the energy of the systems by: 

(5)                                                                                                          
dT

Ed
CV 

 According to the fluctuation-dissipation theorem of statistical 

mechanics, the variance of the energy is related to the specific 

heat by [15, 16]: 

n̂  in̂

in̂

Fig. 1. Schematic representation of the local director in̂  

and the director n̂  of liquid crystal in the 

Wange-Warner model 
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Fig. 2. The six possibilities of nearest neighbouring spin in 

the Wange-Warner model 
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3.     MONTE CARLO SIMULATION 

The Monte Carlo method is a technique for analyzing 

phenomena by means of computer algorithms that employ, in 

an essential way, the generation of random numbers [17, 18]. 

The term ”Monte Carlo” was given its name by Stanislaw 

Ulam and John von Neumann, who invented the method to 

solve neutron diffusion problems at Los Alamos in the mid 

1940s. It was suggested by gambling casinos at the city of  

Monte Carlo in Monaco.  

In our Monte Carlo simulation, we used Metropolis 

algorithm to compute the energy per site, order parameter and 

specific heat as function of temperature in the magnetic field 

variations. The procedure of the simulation is described as 

follow. 

a. Determine the parameter constants :  

1) The number of lattice size : 404040     N xx  

2) The strength of interaction : 1J  

3) The Boltzmann’s constant  : 1Bk  

4) The lowest temperature 010.Ta  , the highest 

temperature 111.Tb  , the number steps of 

temperature 200NT , and compute the step of temperature 

NT/)TaTb(dT   

5) The lowest magnetic field 0ha , the highest 

magnetic field 80.hb  , and the steps of magnetic field 

10.dh   

b. For hah   to hbh   with the step dh , do : 

1) for TaT   to TbT   with step dT , do : 

a) determine the initial configuration of spins 

b) determine the tolerance of spins flip process 

10.tol  , 

c) determine the number of Monte Carlo loop 

4000NC and NCA = 3000 

d) for the Monte Carlo loops, do : 

 calculate the six nearest-neighbors spins of 

each spin in a site of lattice 

 calculate the change in energy of flipping a 

spin E  

 calculate the transition propbabilities: 

  Tk/Eexp,minp B 1  

 decide which transitions will occur by: 

1+-2*tol<  NN,N,rand.*p<  NN,N,randtrans ))(() )((

 

 determine the new configuration of spins 

 calculate the variable of interest E , S , and 

VC  

e)  calculate the average of E , S , and VC  for 

1000 data (from 3000 to 4000 steps) 

c. display the diagrams of: T vs E , T vs S , and 

T vs CV . 

All calculations in this simulation were done using a 

MATLAB program. These runs took 120.53 hours for 

404040     xx  lattices (or 64.000 molecules), 9 steps of h, 

200 steps of T, and 4000 steps of Monte Carlo loops.  

 

4.       RESULT AND DISCUSSION 

Figure 1 shows energy E  as a function of 

temperatureT , for various values of magnetic field 

0.7 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0,h , and 0.8. For h = 0 

(absence of magnetic field), the energy jumps drastically at the 

critical temperature. The apparent discontinuity of the energy 

E suggests that the system has undergone a first order phase 

transition. For higher h, the jump of first order phase transition 

becomes small and in the critical magnetic field 

30.hh c   the jump is disappeared and the second order 

phase transition is occurred. For h  hc, the energy E becomes 

continuous for all the values of magnetic fields.  In the figure, 

it is shown that the temperature transition is higher for larger 

of magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Energy per site E as a function of temperature T for various values of the 

magnetic field h. 
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Figure 2 depicts orientational order parameter S as a 

function of temperature for various values of h. As the same 

of energy in Figure 1, for the absence of magnetic field (h = 

0), the order parameter S jumps drastically at the critical 

temperature and it clears that the phase transition is first order. 

Upon increasing the strength of magnetic field ( chh 0 ), 

the jump of the order parameter becomes small and in a 

critical magnetic field ( 30,hc  ), the order parameter 

becomes continuous and the phase transition changes 

becoming the second order. In the Figure 2, it can be seen that 

the existence of magnetic field influences to the value of order 

parameter. In the range of   0 < h < hc and T > Tt, where Tt is 

transition temperature, the value of order parameter is higher 

than zero. It means that the magnetic field induces 

orientational order in the isotropic phase to the paranematic 

phase In this region, the nematic phase and paranematic phase 

are distinguishable. The phase transition is a first order phase 

transition between nematic and paranematic phase, see [6, 8]. 

For the magnetic field larger than hc there is no phase 

transition and the nematic and paranematic phase are 

indistinguishable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 describes specific heat CV as a function of 

temperature T for various values of h.  For h = 0, we find that 

the specific heat shows a sharp maximum at the transition 

temperature. Upon the increasing the strength of magnetic 

field, the sharpness becomes small and in the critical magnetic 

field hc the sharpness is lost and the second order phase 

transition is appeared. This is in agreement Giordano [15].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows the variation of energy with magnetic 

field for different values of temperature. In general, for all 

temperatures, the energy of the system decreases with 

increases of the magnetic field. For T < Tf ( 20.T f   is 

transition temperature in absence of magnetic field, first order 

transition) and sTT   ( 30.Ts   is transition temperature 

of the second order phase transition in existence of magnetic 

field), the energy is continuous, and in the range 

Fig. 2. Orientational order parameter S as a function of temperature T for various 

values of the magnetic field h. 

Fig. 3. Specific heat  CV  as a function of temperature T for various values of the 

magnetic field h. 

Fig. 4. Energy per site E as a function of magnetic field h for various values of 

temperature T. 



                                           International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:10 No:06                                 20 

                                                                                                                        102906-7575 IJBAS-IJENS © December  2010  IJENS                                                                                   I J E N S 

sf TTT   the energy is discontinuous. The discontinuity 

of E indicates that the phase transition is a first order.  

Figure 5 describes the order parameter S as a function of 

magnetic field h for various values of temperature T. This 

relation is opposite with the energy versus the magnetic field. 

The order parameter is increase proportional to the increasing 

of the magnetic field for all temperatures. A discontinuous 

jump in S as a function of magnetic field h is found at all 

temperatures below sT  and above fT . In the range of 

temperature sf TTT  , the order parameter is a 

discontinuous and it is a first order phase transition. The 

discontinuity of the order parameter S is similar to the 

magnetization M of spins on the ising model, see [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.       CONCLUSIONS 

We have used a Wange-Warner simple cubic lattice 

model to study the influence of magnetic field on nematic-

isotropic phase transition of liquid crystals. The applied of 

magnetic field on liquid crystal changes the first order phase 

transition become to the second order and induces the 

isotropic phase become to the paranematic phase.  This is 

shown in phase diagrams involving energy per site, 

orientational order parameter and specific heat as function of 

temperature for the various values of magnetic field. 
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