“Authentic Assessment for improving Teaching Quality”

November 8-9, 2014
Rectorate Hall and Graduate School
Yogyakarta State University
Indonesia
Organized by:
Doctoral and Master’s Program in
Educational Research and Evaluation
Graduate School, Yogyakarta State University
Proceeding
International Conference on Educational Research and Evaluation (ICERE) 2014

Publishing Institute
Yogyakarta State University

Director of Publication
Prof. Djemari Mardapi, Ph.D.

Board of Reviewers
Prof. Djemari Mardapi, Ph.D.
Prof. Dr. Badrun Kartowagiran
Prof. Dr. Sudji Munadi
Prof. Dr. Trie Hartiti Retnowati
Dr. Heri Retnowati
Dr. Widihastuti

Editors
Ashadi, Ed.D.
Suhaini M. Saleh, M.A.
Titik Sudartinah, M.A.

Lay Out
Anggit Prabowo, M.Pd.
Rohmat Purwoko, A.Md.

Address
Yogyakarta State University
ISSN: 2407-1501
@ 2014 Yogyakarta State University

All right reserved. No part of this publication may be reproduced without the prior written permission of Yogyakarta State University

All articles in the proceeding of International Conference on Educational Research and Evaluation (ICERE) 2014 are not the official opinions and standings of editors. Contents and consequences resulted from the articles are sole responsibilities of individual writers.
BACKGROUND

In its effort to improve the quality of education in Indonesia, the Indonesian government has imposed Curriculum 2013 on schools of all level in Indonesia. The main difference between Curriculum 2013 and the previous curriculum lies in its implementation which uses the scientific approach. For the reason, teachers need to develop teaching strategies different from those they used to apply in the implementation of the previous curriculum. Besides, teachers also need to develop the techniques of evaluating students’ learning achievement, which are relevant to the scientific approach. The evaluation has to be able to show the students’ learning achievement in observing, experimenting, social networking, etc.

Authentic assessment conducted in the classroom and focusing on complex and contextual tasks enables students to perform their competence in a more authentic arrangement. It is very relevant to the authentic approach integrated in their teaching process, especially at elementary schools, or for appropriate lessons. It must be able to show which attitude, skill, and knowledge have or have not been mastered by the students, how they use their knowledge, what aspect they have or have not been able to apply, and so on.

On the basis of the above consideration, teachers can identify what materials the students can study further and for what material they need to have a remedial program. Authentic assessment, however, is not that easy!
FOREWORD

In the academic year of 2014, the government in this case the Ministry of Education and Culture has established the policy to run the curriculum of 2013 for the all levels of elementary and intermediate education in Indonesia. It means the schools have to be ready to implement the Curriculum of 2013. Basically, the implementation of the 2013 curriculum is an effort from the government to enhance the quality of education.

One of the characteristics of the 2013 curriculum is make use the scientific approach in the learning process. This approach is to improve the students’ creativity in learning. In general, this approach seems to be a new thing for the teachers in which several problems and obstacles appear in its practice. The teachers are required to develop the learning strategies and the assessment systems which are relevant and appropriate in order to nurture the students’ creativity. One of the assessment methods that can support the concept of scientific approach is by sing the authentic assessment. Authentic assessment can give the description of the knowledge, the attitudes, and the skills as well as what has or has not owned by the students and the way they apply their knowledge. Also, in what case they have or have not been able to implement the learning acquisition.

Based to the above circumstances, the Study Program of Educational Research and Evaluation, Graduate School of Yogyakarta State University (Universitas Negeri Yogyakarta) conduct the international seminar on the theme “Classroom Assessment for Improving Teaching Quality”. There will be three sub-themes on this seminar, i.e. Issues of Classroom Assessment Implementation, Implementation of Authentic Assessment, and Developing a Strategy of Creative Teaching. By having this seminar, the participants are expected to possess the knowledge and the skills to develop and to apply the authentic assessment.

Yogyakarta, November 8, 2014
Head of Committee

Prof. Dr. Sudji Munadi
CONTENTS:

<table>
<thead>
<tr>
<th>Title</th>
<th>Background</th>
<th>Foreword</th>
<th>Welcome Speech</th>
<th>Preface</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Background</td>
<td>Foreword</td>
<td>Welcome Speech</td>
<td>Preface</td>
<td>Content</td>
</tr>
<tr>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td>iv</td>
<td>v</td>
<td>vi</td>
</tr>
</tbody>
</table>

Invited Speaker

ISSUES OF CLASSROOM ASSESSMENT IMPLEMENTATION
Madhabi Chatterji .. 2

IMPLEMENTATION OF AUTHENTIC ASSESSMENT
Pongthep Jiraro.. 11

DEVELOPING A STRATEGY OF CREATIVE TEACHING
Paulina Panen.. 23

Paper Presenter

Theme 1:

Issues of Classroom Assessment Implementation

ASSESSMENT IN DEVELOPMENT COMPUTER-AIDED INSTRUCTION
Abdul Muis Mappalotteng .. 35

THE MEASUREMENT MODEL OF INTRAPERSONAL AND INTERPERSONAL SKILLS CONSTRUCTS BASED ON CHARACTER EDUCATION IN ELEMENTARY SCHOOLS
Akif Khilmiyah.. 47

LEARNING ASSESSMENT ON VOCATIONAL SUBJECT MATTERS OF THE BUILDING CONSTRUCTION PROGRAM OF THE VOCATIONAL HIGH SCHOOL IN APPROPRIATE TO CURRICULUM 2013
Amat Jaedun .. 63

ACCURACY OF EQUATING METHODS FOR MONITORING THE PROGRESS STUDENTS ABILITY
Anak Agung PurwaAntara .. 74
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFECT OF PERFORMANCE ASSESSMENT ON STUDENTS' ACHIEVEMENT IN PHYSICS HIGH SCHOOL</td>
<td>86</td>
</tr>
<tr>
<td>Aswin Hermanus Mondolang</td>
<td></td>
</tr>
<tr>
<td>TEST ITEM ANALYSIS PROGRAM DEVELOPMENT WITH RASCH MODEL ONE PARAMETER FOR TESTING THE ITEM DIFFICULTY LEVEL OF MULTIPLE-CHOICE TEST USING BLOODSHEDE DEV C++ APPLICATIONS</td>
<td>93</td>
</tr>
<tr>
<td>Dadan Rosana, Otok Ewi Amsirta</td>
<td></td>
</tr>
<tr>
<td>EFFECTIVENESS OF REASONED OBJECTIVE CHOICE TEST TO MEASURE HIGHER ORDER THINKING SKILLS IN PHYSICS IMPLEMENTING OF CURRICULUM 2013</td>
<td>101</td>
</tr>
<tr>
<td>Edi Istiyono, Djemari Mardapi, Suparno</td>
<td></td>
</tr>
<tr>
<td>DEVELOPING STUDENTS’ SELF-ASSESSMENT AND STUDENTS’ PEER-ASSESSMENT OF THE SUBJECT-MATTER COMPETENCY OF PHYSICS EDUCATION STUDENTS</td>
<td>111</td>
</tr>
<tr>
<td>Enny Wijayanti, Kumaidi, Mundilarto</td>
<td></td>
</tr>
<tr>
<td>THE RESULT OF ASSESSMENT FOR STUDENTS IN SOLVING EXPONENTS AND LOGARITHMS PROBLEMS (CASE STUDY IN GRADE X CLASS MATHEMATICS AND NATURAL SCIENCE (MIA) 2 STATE SENIOR HIGH SCHOOL 1 DEPOK 2014/2015)</td>
<td>123</td>
</tr>
<tr>
<td>Fajar Elmy Nuriyah</td>
<td></td>
</tr>
<tr>
<td>RELIABILITY RANKING AND RATING SCALES OF MYER AND BRIGGS TYPE INDICATOR (MBTI)</td>
<td>131</td>
</tr>
<tr>
<td>Farida Agus Setiawati</td>
<td></td>
</tr>
<tr>
<td>THE COMPARISON OF ITEMS’ AND TESTEES’ ABILITY PARAMETER ESTIMATION IN DICHOTOMOUS AND POLITOMUS SCORING (STUDIES IN THE READING ABILITY OF TEST OF ENGLISH PROFICIENCY)</td>
<td>139</td>
</tr>
<tr>
<td>Heri Retnawati</td>
<td></td>
</tr>
<tr>
<td>STUDENTS’ CHARACTER ASSESSMENT AS A REFERENCE IN TEACHING LEARNING PROCESS AT SMPK GENERASI UNGGUL KUPANG</td>
<td>151</td>
</tr>
<tr>
<td>KorneliusUpa Rodo, Netry E.M. Maruckh, Joko Susilo</td>
<td></td>
</tr>
<tr>
<td>MEASUREMENT ERROR ESTIMATION OF CUT SCORE OF ANGOFF METHOD BY BOOOSTRAP METHOD</td>
<td>157</td>
</tr>
<tr>
<td>Sebastianus Widanarto Prijowuntat</td>
<td></td>
</tr>
</tbody>
</table>
THE ACTUALIZATION OF PROJECT-BASED ASSESSMENT IN ENTREPRENEURSHIP EDUCATION BASED ON LOCAL EXCELLENCE IN MEASURING SKILLS OF VOCATIONAL HIGH SCHOOL STUDENTS
Sukardi ...168

THE EFFECTIVENESS OF THE USE OF THE INSTRUMENTS AND RUBRICS OF CREATIVE THINKING SKILLS–BASED ASSESSEMENT PROJECT IN THE LEARNING OF CONSUMER EDUCATION
Sri Wening ...177

PROJECT WORK USED IN A COMPREHENSIVE ASSESSMENT TO MEASURE COMPETENCES OF UNDERGRADUATE ENGINEERING STUDENTS
Sudiyatno ...194

THE DEVELOPMENT OF A SET OF INSTRUMENT FOR STUDENT PERFORMANCE ASSESSMENT
Supahar ...202

DEVELOP MODEL TASC TO IMPROVE HIGHER ORDER THINKING SKILLS IN CREATIVE TEACHING
Surya Haryandi ..210

THE EFFECT OF NUMBER’S ALTERNATIVE ANSWERSON PARTIAL CREDIT MODEL (PCM) TOWARD ESTIMATION RESULT PARAMETERS OF POLITOMUS ITEM TEST
Syukrul Hamdi ..216

THE CONTENT VALIDITY OF THE TEACHER APTITUDE INSTRUMENT
Wasidi ...227

DEVELOPING COGNITIVE DIAGNOSTIC TESTS ON LEARNING OF SCIENCE
Yuli Prihatni ..233

DIAGNOSTIC MODEL OF STUDENT LEARNING DIFFICULTIES BASED ON NATIONAL EXAM
Zamsir, Hasnawati ..246

DEVELOPMENT OF A MODEL OF ACADEMIC ATTITUDE AMONG SENIOR HIGH SCHOOL STUDENTS
Sumadi ...258
Theme 2: Implementation of Authentic Assessment

IMPLEMENTATION OF AUTHENTIC ASSESSMENT OF CURRICULUM 2013 AT STATE ELEMENTARY SCHOOLS IN PABELAN
Abdul Mu’in, Nining Marianingsih, Woro Widjastuti
265

AUTHENTIC ASSESSMENT OF STUDENT LEARNING MATHEMATICS WITH TECHNOLOGY
Ida Karnasih
278

AUTHENTIC ASSESSMENT : UNDERSTANDING LEVELS AND CONSTRAINTS IN THE IMPLEMENTATION OF THE TEACHER IN THE CITY OF LHOKSEUMAWE ACEH PROVINCE
M. Hasan
286

AUTHENTIC ASSESSMENT DETERMINANT IN ISLAMIC RELIGION EDUCATION EXECUTION TOWARDS COGNIZANCE QUALITY HAS A RELIGION IN STUDENT AT ELEMENTARY SCHOOL AND MADRASAH IBTIDA'YAH AT KUDUS REGENCY
Masrurkhan
295

AUTHENTIC ASSESSMENT FOR IMPROVING TEACHING QUALITY: PORTFOLIO AND SLC IN PAPUA HARAPAN SCHOOL
Noveliza Tepy, Sabeth Nuryana, Putri Adri
307

Theme 3: Developing a Strategy of Creative Teaching

THE EFFECT OF MATH LESSON STUDY IN TERMS OF MATHEMATICS TEACHER’S COMPETENCE AND MATH STUDENT ACHIEVEMENT
‘Afifatul Muslikah
319

AN EVALUATION OF THE ENGLISH TEACHING METHODS IMPLEMENTED AT BUJUMBURA MONTESSORI PRIMARY SCHOOL: WEAKNESSES AND ACHIEVEMENTS
Alfred Irambona
323

TEAMS GAME TOURNAMENT FOR IMPROVING THE STUDENTS’ INTEREST TOWARDS MATHEMATICS
Anggit Prabowo
331
DEVELOPING LEARNING KIT TO IMPROVE HOTS FOR FLAT SIDE OF SPACE COMPETENCE
Arifin Riadi ... 346

DEVELOPMENT STRATEGY OF TEACHERS’ TEACHING PROFESSIONALISM
Bambang Budi Wiyono .. 352

THE EFFECT OF QUESTION PROMPTS AND LANGUAGE ABILITY ON THE QUALITY OF THE STUDENT’S ARGUMENT
Bambang Suteng Sulasmono, Henny Dewi Koeswanti 364

THE USE OF RESPONSE ACTIVITIES IN DEVELOPING READING SKILLS AMONG INTERMEDIATE EFL STUDENTS
Beatriz Eugenia Orantes Pérez ... 378

COMPARISON OF THE EFFECTIVENESS OF CONSTRUCTIVISM AND CONVENTIONAL LEARNING KIT OF MATHEMATICS VIEWED FROM ACHIEVEMENT AND SELF CONFIDENCE OF STUDENTS IN VOCATIONAL HIGH SCHOOL (AN EXPERIMENTAL STUDY IN YEAR XI OF SMK MUHAMMADIYAH 2 YOGYAKARTA)
Dwi Astuti, Heri Retnawati ... 389

THE EFFECT OF CLASS-VISITATION SUPERVISION OF THE SCHOOL PRINCIPAL TOWARD THE COMPETENCE AND PERFORMANCE OF PANGUDI LUHUR AMBARAWA ELEMENTARY SCHOOL TEACHERS
Dwi Setiyantri, Lowisye Leatoum, Ari Sri Puranto, Theodora Hadiastuti, Elsavior Silas ... 394

THE ‘REOP’ ARCHITECTURE TO IMPROVE STUDENTS LEARNING CAPACITY
Edna Maria, Febriyant Jalu Prakosa, Christiana, Monica Ganeip Pertiwi 403

E-LEARNING-BASED TRAINING MODEL FOR ACCOUNTING TEACHERS IN EAST JAVA
Endang Sri Andayani, Sawitri Dwi Prastiti, Ika Putri Larasati, Ari Sapto ... 408

CONCEPT AND CONTEXT RELATIONSHIP MASTERY LEARNING AND THE RELATIONSHIP BETWEEN BIOLOGY AND PHYSICS CONCEPT ABOUT MANGROVE FOREST
Eva Sherly Nonke Kaunang .. 431
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE EFFECTIVENESS OF TEACHING MULTIMEDIA ON TOPIC OF THREE DIMENSIONS IN TERMS OF THE MATHEMATICS LEARNING ACHIEVEMENT AND INTEREST OF STATE SENIOR HIGH SCHOOL</td>
<td>439</td>
</tr>
<tr>
<td>Lisner Tiurma, Heri Retnawati</td>
<td></td>
</tr>
<tr>
<td>BUILDING THE STUDENT CHARACTER THROUGH THE ACADEMIC SERVICE</td>
<td>448</td>
</tr>
<tr>
<td>M. Miftah</td>
<td></td>
</tr>
<tr>
<td>THE TEACHING EVALUATION OF GERMAN TEACHER IN MALANG</td>
<td>464</td>
</tr>
<tr>
<td>Primardiana Hermilia Wijayati</td>
<td></td>
</tr>
<tr>
<td>SUPPORTING PHYSICS STUDENT LEARNING WITH WEB-BASED ASSESSMENT FOR LEARNING</td>
<td>479</td>
</tr>
<tr>
<td>Sentot Kusairi, Sujito</td>
<td></td>
</tr>
<tr>
<td>AMONG LEARNING AS A CULTURE BASED LEARNING OF TAMAN MUDA TAMAN SISWA AS CONTRIBUTION TO THE LEARNING PROCESS OF 2013 CURRICULUM AND CHARACTER EDUCATION OF THE NATION</td>
<td>490</td>
</tr>
<tr>
<td>Siti Malikhah Towaf</td>
<td></td>
</tr>
<tr>
<td>THE PERFORMANCE OF THE BACHELOR EDUCATION IN-SERVICE TEACHERS PROGRAMME (ICT-BASED BEITP) BACHELOR GRADUATED AND ITS DETERMINANT</td>
<td>513</td>
</tr>
<tr>
<td>Slameto</td>
<td></td>
</tr>
<tr>
<td>DEVELOPING LEARNING TOOLSOIF A GAME-BASED LEARNING THROUGH REALISTIC MATHEMATICS EDUCATION (RME) FOR TEACHING AND LEARNING BASED ON CURRICULUM 2013</td>
<td>525</td>
</tr>
<tr>
<td>Sunandar, Muhtarom, Sugiyanti</td>
<td></td>
</tr>
<tr>
<td>PREPARATION OF COMPUTER ANIMATION MODEL FOR LEARNING ELECTRICAL MAGNETIC II PHYSICAL EDUCATION PROGRAM STUDENTS SEMESTER IV TEACHER TRAINING AND EDUCATION FACULTY SARJANAWIYATA TAMAN SISWA UNIVERSITY 2014</td>
<td>536</td>
</tr>
<tr>
<td>Sunarto</td>
<td></td>
</tr>
<tr>
<td>IMPROVEMENT ACTIVITIES AND STUDENT LEARNING OUTCOMES IN READING COMPREHENSION THROUGH COOPERATIVE LEARNING TYPE TEAMS-GAMES-TOURNAMENT (TGT) CLASS V SD NEGERI 8 METRO SOUTH</td>
<td>547</td>
</tr>
<tr>
<td>Teguh Prasetyo, Suwarjo, Sulistiasih</td>
<td></td>
</tr>
</tbody>
</table>
PSYCHOLOGICAL FACTOR AFFECTING ENGLISH SPEAKING PERFORMANCE FOR THE ENGLISH LEARNERS IN INDONESIA
Youssouf Haidara ...
THE COMPARISON OF ITEMS’ AND TESTEES’ ABILITY PARAMETER ESTIMATION IN DICHOTOMOUS AND POLITOMUS SCORING (STUDIES IN THE READING ABILITY OF TEST OF ENGLISH PROFICIENCY)

Heri Retnawati (retnawati_heriuny@yahoo.co.id)
Yogyakarta State University, Indonesia

Abstract

This study aimed to compare the testees’ ability estimation in the politomous and dichotomous scoring model. The data used in this study are the responses of testees to the Test of English Proficiency (TOEP) set 1 in reading subtest, which are usually scoring in dichotomous model then they are scoring in politomous model. In the reading subtest of TOEP, in one text presented several items related to the text. In the dichotomous scoring, each item is scored one by one item. As alternative, every item item is scored using dichotomous model separately, but for every text, the acquisition of these items are added to the score attained politomous model. The estimation of items’ and abilities’ parameter in dichotomous scoring were done using the Rasch models and in the politomous scoring were done with partial credit models using QUEST software. Comparative analysis of the two models are seen based on the average results of the estimated difficulty level, graphical analysis, calculating the correlation, and the results of the value of information function. The results of the analysis showed that the average item difficulty dichotomous scoring model is 0.486 with a standard deviation of 0.895 and the mean level of difficulty politomous scoring model is -0.105 with a standard deviation of 0.695. The correlations between abilities of participants using the dichotomous and the politomous scoring model is 0.94. The value of information function in the dichotomous scoring model is higher than in the politomous scoring models. These results indicate that the Reading of TOEP set 1, the dichotomous scoring model is better than the politomous scoring model.

Key Word: dichotomous scoring model, politomous scoring model, Reading, Test of English Proficiency (TOEP)

Introduction

The scoring models for multiple-choice items typically using dichotomous scoring models, the correct answer is scored 1 and the wrong answer is scored 0. Similarly, to scorer responses of English tests especially on reading subtest, a text usually consists of many questions, and each question is given a score of their own. The scoring of the correct answer is conducted to determine the ability of participants in the test directly.

The alternative ways is considering the text used in readingsubtest. A text and many items related the text are considered one item, which has many items of its supporters called testlet. The item supporting the text is scored individually the correct answer is scored 1 and the wrong answer is scored 0. The scores acquisition in the item is the sum of the scores items’ supporters. The model is called the scoring of politomous models. For example in Figure 1 is the Reading test on TOEP 1. Initially presented text, then compiled a few questions based on the text.
An item analysis to determine the characteristics of the item and estimate the ability of candidates can be done using the classical test theory and the item response theory. In item response theory with dichotomous scoring, the analysis that can be selected is the logistic model, of 1 parameter logistics (1PL, Rasch), 2 parameter logistics (2PL), and 3 parameter logistics (PL) (Hambleton&Swaminathan, Hambleton, Swaminathan & Rogers, Heriretnawati, 2014). In item response theory with polotomous scoring model that can be used include partial credit model (PCM), graden response model (GRM) and generalized partial credit model (GPCM) (Van der Linden & Hambleton, 1997). Utilization of the polotomous scoring models on reading subtest, especially in the Test of English Proficiency (TOEP) has not been done, including comparison the two models to know which model is better. Related to the polotomousorig model, this study compares the ability of participants to the estimate of the dichotomous and polotomous scoring models on reading subtest of TOEP. The model compared in this study is a model for the Rasch (1PL) for dichotomous scoring model and partial credit model (PCM) for polotomous scoring model.

The equations used in the Rasch model (Hambleton, Swaminathan, and Rogers, 1991, Hulin, 1985) as follows:

\[P_i(\theta) = \frac{e^{(\theta - b_i)}}{1 + e^{(\theta - b_i)}}, i : 1, 2, 3, ..., n \] \hspace{1cm} (1)

where:

\[P_i(\theta) \] is the probability of a correct response for the item \(i \) at the ability level \(\theta \).
\(\theta \) is the latent trait or ability level of the examinee.
\(b_i \) is the difficulty parameter of the item \(i \).
\(P_i(\theta) \) : the testee probability at \(\theta \) to answer i item correctly

\(\theta \) : testee’s ability

\(b_i \) : item difficulty index for item-i

\(e \) : natural number (2,718)

\(n \) : the number item in test

The parameter \(b_i \) is a point on the ability scale to have 50% probability to answer the item correctly. Suppose a test item has parameter \(b_i = 0.3 \) means that the required minimum of 0.3 on a scale of ability to be able to answer correctly with probability 50%. The greater the value of the parameters \(b_i \), the greater the ability needed to answer correctly with probability 50%. In other words, the greater the value of the parameters \(b_i \), the more difficult the item.

The partial credit model (PCM) is an extension of the Rasch models, assuming different items has the same discrimination index. PCM has some similarities with the Graded Response Model on the items suspended in a tiered categories, but the difficulty in every step of the index does not need to be sequenced, a step can be more difficult than the next step.

The general form of PCM according to Muraki & Bock (1997: 16) as follows.

\[
P_{jk}(\theta) = \frac{\exp \left(\sum_{v=0}^{k} (\theta - b_{jk}) \right)}{\sum_{k=0}^{m} \exp \left(\sum_{v=0}^{k} (\theta - b_{jk}) \right)} , \text{ k=0,1,2,...,m} \ldots \ldots \ldots \ldots \ldots \ldots (2)
\]

Where

\(P_{jk}(\theta) \) = Probability of participants capable of obtaining a score category k to item j,

\(\theta \) : The ability of the participants,

\(m + 1 \) : the number of categories of j item,

\(b_{jk} \) : index of item difficulty category j k

\[
\sum_{h=0}^{b} (\theta - b_{jh}) \equiv 0 \quad \text{and} \quad \sum_{h=0}^{b} (\theta - b_{jh}) \equiv \sum_{h=1}^{b} (\theta - b_{jh}) \ldots \ldots \ldots \ldots \ldots \ldots (3)
\]

The score on the PCM category shows that the number of steps to complete the item correctly. The higher scores category shows the greater ability than a lower score categories. In PCM, if an item has two categories, then the equation 2 is an equation on the Rasch models.

To compare the results of the estimation of the two scoring models used the average ratio estimation abilities. The estimation results with dichotomous scoring models and scoring
politomus models then correlated and made scatter plot. It also conducted a comparison of the value of the information function in both scoring models.

The item information functions is a method to describe the strength of an item on the test and declared the contributions of items in uncovering the latent ability (latent trait) as measured by the tests. Using the item information can be known which item fits with the model that helps in the items selection. According to Hambleton and Swaminathan (1985), mathematically, item information function is defined as follows.

\[I_i(\theta) = \frac{\left[P_i(\theta) \right]^2}{P_i(\theta)Q_i(\theta)} \] \hspace{2cm} (4)

where:

- \(i \): 1, 2, 3, ..., n
- \(I_i(\theta) \) : information function i-item
- \(P_i(\theta) \) : probability of testee with \(\theta \) ability to answer i-item correctly
- \(P_i'(\theta) \) : derivative function \(P_i(\theta) \) to \(\theta \)
- \(Q_i(\theta) \) : probability of testee with \(\theta \) ability to answer i-item incorrectly

The information function of item in one parameter logistic model (1PL) defined by Birnbaum (Hambleton & Swaminathan, 1985: 107) in the equation follows.

\[
I_i(\theta) = \frac{2.89}{\left[\exp(1.7(\theta - b_i)) \right]} \left[1 + \exp(-1.7(\theta - b_i)) \right] \] \hspace{2cm} (5)

where:

- \(I_i(\theta) \): item information function i
- \(\theta \): the level of the subject’s ability
- \(a_i \): different power parameters of the i-th item
- \(b_i \): item difficulty index parameter i-th
- \(c_i \): pseudo guesses index (pseudoguessing) item ith
- \(e \): natural numbers whose values approaching 2.718

Based on the equation of the information function above, the information function satisfies the properties:(1) in the item response logistic model, the information function of item approaching a maximum value if \(\theta \) approaching to \(b_i \).
The value of information function on the politomous scoring is the sum of the value of information function of each item category. In this regard, the value of information function will be higher if the value of the information function of each category has a value. The item information function \(I_j(\theta) \) can be defined mathematically as follows:

\[
I_j(\theta) = \sum_{k=1}^{m} I_{jk}(\theta) \nonumber \tag{6}
\]

The value of the test information function is the sum of the value of information functions of the test items (Hambleton & Swaminathan, 1985:94). In this regard, the value of the test information function will be high if the items composing the test have a higher information function. The value of information function of test \(I(\theta) \) can be defined mathematically as follows:

\[
I(\theta) = \sum_{j=1}^{n} I_j(\theta) \nonumber \tag{7}
\]

The values of the item parameters and abilities are the estimation results. Because of they were the estimation results, the truth is probabilistic and not liberated by error measurement. In the item response theory, the standard error of measurement (SEM) is closely related to the information function. The value of information function has inverse quadratic relationship with SEM, the greater the information function, the SEM is smaller or vice versa (Hambleton, Swaminathan, & Rogers, 1991, 94). If the value of the information function is expressed by \(I(\theta) \) and the estimated value of SEM revealed by \(SEM(\theta) \), then the relationship between the two, according to Hambleton, Swaminathan, & Rogers (1991: 94) is expressed by

\[
SEM(\theta) = \frac{1}{\sqrt{I(\theta)}} \nonumber \tag{8}
\]

Method

This study used a quantitative approach. The data were analyzed including TOEP 1 data especially on Reading subtest consisting of 50 items in 7 texts. The test responded by high school students in four provinces, Jakarta, West Java, Yogyakarta, and East Java of Indonesia, which involved 600 testees. The testees’ responses was scored by the dichotomy model at 50 items and the politoous models at 7 texts.

The analysis is carried out to compare the two scoring models that estimate the participant’s ability and item parameter estimates, descriptive analysis on the level of difficulty, perform chart analysis on the item characteristic curve of politomous and
dichotomy data, calculating the correlation of ability parameter of dichotomous and and polytomous scoring model, and calculate the value of the function of both scoring model. The results are compared qualitatively and quantitatively. The best model is a model produce smaller SEM values or bigger value of information function.

Results and Discussion

Using the Rasch model of assisted Quest computer program, can be estimated item parameters for the 50 items on Reading subtest. The estimation results are presented in Table 1. Based on these results, it can be derived that there are two easy items (numbers 9 and 29), and there are three items that are difficult (numbers 23, 32, 39).

Table 1. Parameters 40 Items in Dichotomous Scoring Model

<table>
<thead>
<tr>
<th>Item</th>
<th>b</th>
<th>Item</th>
<th>b</th>
<th>Item</th>
<th>b</th>
<th>Item</th>
<th>b</th>
<th>Item</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.86</td>
<td>11</td>
<td>-0.04</td>
<td>21</td>
<td>1.25</td>
<td>31</td>
<td>-1.32</td>
<td>41</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>-0.14</td>
<td>12</td>
<td>0.89</td>
<td>22</td>
<td>-0.62</td>
<td>32</td>
<td>3.77</td>
<td>42</td>
<td>-0.96</td>
</tr>
<tr>
<td>3</td>
<td>0.92</td>
<td>13</td>
<td>-0.36</td>
<td>23</td>
<td>2.37</td>
<td>33</td>
<td>0.09</td>
<td>43</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>-0.49</td>
<td>14</td>
<td>0.89</td>
<td>24</td>
<td>0.65</td>
<td>34</td>
<td>-0.24</td>
<td>44</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>-0.08</td>
<td>15</td>
<td>-0.34</td>
<td>25</td>
<td>-0.77</td>
<td>35</td>
<td>0.17</td>
<td>45</td>
<td>1.62</td>
</tr>
<tr>
<td>6</td>
<td>-0.14</td>
<td>16</td>
<td>0.57</td>
<td>26</td>
<td>-0.9</td>
<td>36</td>
<td>-1.61</td>
<td>46</td>
<td>0.93</td>
</tr>
<tr>
<td>7</td>
<td>-1.25</td>
<td>17</td>
<td>0.25</td>
<td>27</td>
<td>-0.6</td>
<td>37</td>
<td>-0.43</td>
<td>47</td>
<td>-0.3</td>
</tr>
<tr>
<td>8</td>
<td>-0.55</td>
<td>18</td>
<td>-1.81</td>
<td>28</td>
<td>-0.21</td>
<td>38</td>
<td>-1.11</td>
<td>48</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>-2.03</td>
<td>19</td>
<td>-0.95</td>
<td>29</td>
<td>-2.32</td>
<td>39</td>
<td>2.87</td>
<td>49</td>
<td>1.08</td>
</tr>
<tr>
<td>10</td>
<td>0.94</td>
<td>20</td>
<td>1.15</td>
<td>30</td>
<td>-0.85</td>
<td>40</td>
<td>-0.7</td>
<td>50</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Using the partial credit model, the analysis carried out by the Quest computer program, can be obtained parameters for the 50 items on Reading subtest with 7 texts. The estimation results are presented in Table 2. The results obtained are in line with the results of the analysis using Racsch models, there are two items that have a relatively easy categories and three categories of items are relatively difficult.

Tabel 2. Parameters of Items’ Category in Polotomous Scoring Model

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.24</td>
<td>-1.77</td>
<td>-0.81</td>
<td>-0.62</td>
<td>-0.27</td>
<td>0.31</td>
<td>0.58</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>-1.75</td>
<td>-1.59</td>
<td>-0.82</td>
<td>-0.3</td>
<td>0.63</td>
<td>1.34</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-2.15</td>
<td>-1.56</td>
<td>-0.61</td>
<td>-0.2</td>
<td>0.48</td>
<td>0.74</td>
<td>1.25</td>
<td>3.22</td>
</tr>
<tr>
<td>4</td>
<td>-1.66</td>
<td>-1.81</td>
<td>-1.08</td>
<td>-0.73</td>
<td>-0.15</td>
<td>0.14</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1.54</td>
<td>-1.32</td>
<td>-1.46</td>
<td>-0.59</td>
<td>0.52</td>
<td>1.59</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.83</td>
<td>-1.18</td>
<td>-0.78</td>
<td>-0.4</td>
<td>0.19</td>
<td>0.67</td>
<td>2.97</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.81</td>
<td>-0.46</td>
<td>-0.05</td>
<td>0.89</td>
<td>1.76</td>
<td>2.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on the items parameters, can be made the image of item characteristic curve for dichotomous scoring models. For example, the first text that consists of 8 items. Image characteristic curve for grains in one text is presented in Figure 1. Observing that it can be obtained that there are 2 items that have a similar level of difficulty, so that it can be represented by two other items.

![Figure 1. The Item Characteristic Curves of 8 items Composing Text 1](image)

The picture of item characteristic curve for politomus scoring presented in Figure 2. Looking at the picture, it is found that the categories 4, 5, 6, and 7 do not have a function to estimate the probability answering correctly or estimating the testee’s ability. The category 4, 5, 6, and 7 have been represented by four other categories.

![Figure 2. The Item Characteristic Curves of 8 items Composing Text 1](image)
The estimation results of the testee’s ability on the polotomous and dichotomous scoring model presented in Table 3. Based on these results, it is obtained that the result of estimation in dichotomous scoring model is higher than politomous scoring model. By considering the deviation standard, the result in dichotomous model is more varied than in the politomous scoring model. More results are presented in Table 3 and Figure 3.

Table 3. Comparison of Mean and Standard Deviation of scoring dichotomy and Polotomus

<table>
<thead>
<tr>
<th></th>
<th>Dikotomi</th>
<th>Politomus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rerata</td>
<td>0.048564</td>
<td>-0.10475</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.854882</td>
<td>0.695381</td>
</tr>
</tbody>
</table>

Figure 3. Ability Estimation of Testees using Dichotomous and Polotomus Scoring Model

The estimation results on the polotomous and dichotomous scoring model are relatively close. This is evidenced by scores on the correlation coefficient is 0.956 and determination indexe is 0.914. Similarly, the scatterplot of estimation using dichotomous and polotomous scoring model, which shows the both scorings are correlated and close to the prediction line $y = 0.777 x -0.142$. More results are presented in Figure 4.
Figure 4. Relationship between Estimation Result of Testees’ Ability Using Dichotomous and Politomous Scoring Model

Using the parameters in every item of text, the value of the information function (VIF) can be estimated. The estimation results are summed then. The standard error of measurement can also be estimated using the VIF. In text, VIF and SEM results presented in Figure 5 (on a dichotomous scoring model) and Figure 6 (on politomous scoring model).

Figure 5. VIF and SEM of Text 1 (Dichotomous Scoring Model)
In Figure 5, shows that the maximum value of the information function is 3.0 on a scale of abilities equals to -0.3. In Figure 6, the maximum value of the information function obtained 2.63 on a scale of abilities equals to -0.8. Look at Figure 5 and Figure 6, it can be obtained that the value of the information function in dichotomous scoring model is higher than politomous scoring model. In contrast, SEM in the dichotomous scoring model lower than in politomus scoring model.

Similarly, the value of the information test function which is the total of the value of item information functions. In Figure 7, shows that the maximum value is 23.5 on a scale ability equals to -0.3. In Figure 8, the maximum value of the information function is 17.8 on a
scale ability equals to -0.9. Look at Figure 7 and Figure 8, it can be obtained that value of the test information function in the dichotomous scoring model is higher than the value of the test information function in politomous scoring model. In contrast, the SEM of TOEP1 in dichotomous scoring model is lower than the SEM of TOEP 1 in politomous scoring model.

Conclusion

The results of analysis on one TOEP specially in the Reading subtest showed that the average item difficulty dichotomous scoring model is 0.486 with a standard deviation of 0.895 and the mean level of difficulty politomous scoring model is -0.105 with a standard deviation of 0.695. The correlations between abilities of participants using the dichotomous and the politomous scoring model is 0.94. The value of information function in the dichotomous scoring model is higher than in the politomous scoring models. These results indicate that the Reading of TOEP set 1, the dichotomous scoring model is better than the politomous scoring model.

Discussion

Considering the results of the estimation abilities using the dichotomous scoring model and the politomous scoring model, it can be obtained that the estimation ability of testees in dichotomous scoring model is not too far compared with the results the results politomous scoring model. However, the value of the information function by using the dichotomous scoring model, both the value of the function and value of the information function of test,
are higher than in politomous scoring model. That were happened, because the items of TOEP were developed from dichotomous Rasch scoring model. These results probably occurred only in the case of the analysis of the TOEPreponse data. Related to the stability of the estimation, whether the results are better in dichotomous scoring models or politomous scoring model, it is still required a simulation study. This simulation study can be considered a long test, politomous scoring models, the number of testees, and estimation methods.

References

This is to certify that

Dr. Heri Retnawati, M.Pd.

has participated in

INTERNATIONAL CONFERENCE ON EDUCATIONAL RESEARCH AND EVALUATION (ICERE) 2014

organized by Graduate School, Yogyakarta State University on November 8 - 9, 2014

as a: PRESENTER

with the paper entitled

THE COMPARISON OF ITEMS' AND TESTEES' ABILITY PARAMETER ESTIMATION IN DICHTOMOUS AND POLITOMUS SCORING (STUDIES IN THE READING ABILITY OF TEST OF ENGLISH PROFICIENCY)

Yogyakarta, November 9, 2014

Chairperson

Prof. Dr. Sudji Munadi
NIP. 19530310 197803 1 003