The Global Challenges on The Development and The Education of Mathematics and Science
Mathematics & Mathematics Education
Physics & Physics Education
Chemistry & Chemistry Education
Biology & Biology Education
Science Education

Published by:
Faculty of Mathematics and Science
Yogyakarta State University
Karangmalang, Yogyakarta 55281
Telph. (0274)550227, Fax. (0274)548203

© June 2016

Board of Reviewer
Prof. Allen Price, Ph.D (Emmanuel College Boston, USA)
Ana R. Otero, Ph.D (Emmanuel College Boston, USA)
Dr. Michiel Doorman (Utrecht University, Netherlands)
Prof. Dr. Marsigit (Yogyakarta State University)
Prof. Dr. Mundilarto (Yogyakarta State University)
Prof. Dr. Satriun (Yogyakarta State University)
Prof. Dr. A.K. Prodjosantoso (Yogyakarta State University)
Prof. Dr. IGP. Suryadarma (Yogyakarta State University)
Prof. Dr. Bambang Subali (Yogyakarta State University)
Dr. Ariswan (Yogyakarta State University)
Dr. Agus Maman Abadi (Yogyakarta State University)
Dr. Dhoriva Uwatu U. (Yogyakarta State University)
Dr. Sugiman (Yogyakarta State University)
Dr. Karyati (Yogyakarta State University)
Dr. Slamet Suyanto (Yogyakarta State University)
Dr. Supahar (Yogyakarta State University)
Dr. Siti Sulastri (Yogyakarta State University)
Dr. Inshil Wilueng (Yogyakarta State University)
Wahyu Setyaningrum, Ph.D. (Yogyakarta State University)
Aryadi Wijaya, Ph.D. (Yogyakarta State University)
Preface

Bless upon God Almighty such that this proceeding on 3rd International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS) may be compiled according to the schedule provided by the organizing committee. All of the articles in this proceeding are obtained by selection process by the reviewer team and have already been presented in the Conference on 16 – 17 May 2016 in the Faculty of Mathematics and Natural Sciences, Yogyakarta State University. This proceeding comprises 9 fields, that is mathematics, mathematics education, physics, physics education, chemistry, chemistry education, biology, biology education, and science education.

The theme of this 3rd ICRIEMS is ‘The Global Challenges on The Development and The Education of Mathematics and Science’. The main articles in this conference are given by six keynote speakers, which are Prof. Allen Price, Ph.D (Emmanuel College Boston USA), Ana R. Otero, Ph.D (Emmanuel College Boston USA), Dr. Michiel Doorman (Utrecht University, Netherlands), Prof. Dr. Marsigit, M.A (Yogyakarta State University), Asst. Prof. Dr. Warakorn Limbut (Prince of Songkla University, Thailand), and Prof. Dr. Rosly Jaafar (Universiti Pendidikan Sultan Idris, Malaysia). Besides the keynote and invited speakers, there are also parallel articles that presented the latest research results in the field of mathematics and sciences, and the education. These parallel session speakers come from researchers from Indonesia and abroad.

Hopefully, this proceeding may contribute in disseminating research results and studies in the field of Mathematics and Sciences and the Education such that they are accessible by many people and useful for the Nation Building.

Yogyakarta, May 2016

The Editor Team
Forewords From The Head Of Committee

Assalamu’alaikum warahmatullahi wabarakaatuh

May peace and God’s blessings be upon us all

First of all, allow me to thanks to God, Allah SWT, who has been giving us blessing and mercies so we can join this conference. Ladies and Gentlemen, it is my great honor to welcome you to Indonesia, a unique country which has more than 17,000 islands, more than 1,300 ethnic groups, and more than 700 local languages, and I am also very happy to welcome you to Yogyakarta, the city of education, culture, tourism, and a miniature of Indonesia. We wish you be happy and comfortable in attending the conference in this city.

The third International Conference on Research, Implementation, and Education of Mathematics and Science (ICRIEMS 3rd) 2016 is organized by the Faculty of Mathematics and Science, State University of Yogyakarta. In this year, theme of the conference is: The Global Challenges on The Development and The Education of Mathematics and Science. This conference are dedicated to the 52nd anniversary of Yogyakarta State University and to face challenges of Asean Economic Community in 2016.

This conference facilitates academics, researchers and educators to publish and disseminate their research in the fields of pure, application and education of Science and Mathematics. Furthermore, the purposes of the conference are to establish interaction, communication, and cooperation among academics, researchers and educators at an international level.

On behalf of the committee of this conference, I would like to express our highest appreciation and gratitude to the keynote speakers, including:
1. Allen Price, Ph.D. (Associate Professor of Emmanuel College, Boston USA)
2. Ana R. Otero, Ph.D. (Emmanuel College, Boston USA)
3. Dr. L.M. (Michiel) Doorman (Associate Professor of Utrecht University, Netherland)
4. Prof. Dr. Marsigit, MA. (FMIPA, Universitas Negeri Yogyakarta)
5. Asst. Prof. Dr. Warakorn Limbut (Faculty of Science, Prince of Songkla University, Thailand)
6. Prof. Dr. Rosly Jaafar (Faculty of Physics, Universiti Pendidikan Sultan Idris, Malaysia)

Furthermore, we inform you that the papers presented in this conference are about 200 papers from 302 applicants, who come from various countries and various provinces throughout Indonesia. Therefore, I would like to give my appreciation and many thanks to the presenters and participants who have been actively involved in this seminar.

Finally, I would like to thank the committee members who have been working very hard since half a year ago to ensure the success of the conference. However, if you find any shortcomings and inconveniences in this conference, please forgive us. We would very
happy to receive your suggestions for improvement in the next conference. Thank you very much.

Wassalamu’alaikum warohmatullahi wabarakatuh.

Yogyakarta, May 2016

Dr. Warsono, M.Si.
Forewords From The Dean Of Faculty Of Mathematics And Sciences, Yogyakarta State University

Assalamu’alaikum warahmatullahi wabarakatuh. My greetings for all of you. May peace and God’s blessings be upon us all.

On behalf of the Organizing Committee, first of all allow me to extend my warmest greeting and welcome to the International Conference on Research, Implementation, and Education of Mathematics and Sciences, the third to be held by the Faculty of Mathematics and Science, State University of Yogyakarta, one of the excellent and qualified education universities in Indonesia. This conference is also celebrate the 52th Anniversary of State University of Yogyakarta.

This conference proudly presents keynote speeches by six excellent academics, these are: Allen Price, Ph.D., Ana R. Otero, Ph.D., Dr. Michiel Doorman, Prof. Dr. Marsigiti, MA., Asst. Prof. Dr. Warakorn Limbut, and Prof. Dr. Rosly Jaafar, and around 200 regular speakers.

The advancement of a nation will be achieved if education becomes a priority and firmly supported by the development of technology. Furthermore, the development of technology could be obtained if it is supported by the improvement of basic knowledge such as mathematics, physics, chemistry, and biology. The empowerment of this fundamental knowledge may be achieved by conducting research which is then implemented in developing the technology and the learning process in schools and universities.

This international conference is aimed to gather researchers, educators, policy makers, and practitioners to share their critical thinking and research outcomes. Moreover, through this conference it is expected that we keep updated with new knowledge upon recent innovative issues and findings on the development and the education of mathematics and science, which is in accord with the theme of the conference this year. All material of the conference which are compiled in the abstract book and proceedings can be useful for our reference in the near future.

This conference will be far from success and could not be accomplished without the support from various parties. So let me extend my deepest gratitude and highest appreciation to all committee members who have done an excellent job in organizing this conference. I would also like to thank each of the participants for attending our conference and bringing with you your expertise to our gathering. Should you find any inconveniences and shortcomings, please accept our sincere apologies.

To conclude, let me wish you fruitful discussion and a very pleasant stay in Yogyakarta.

Wa’alaikumsalam warahmatullahi wabarakatuh
Table of Content

Front Cover i
Board of Reviewers ii
Preface iii
Forewords From The Head of Committee iv
Forewords From The Dean of Faculty v
Table of Content ix

Keynotes:

01 Lesson Study Among The Move Of Educational Reformation in Indonesia
Marsigit

Regular Papers:
MATHEMATICS

01 Spatial Extreme Value Modeling Using Max-Stable Processes
Approach (Case Study: Rainfall intensity in Ngawi)
Arief Rachman Hakim, Sutikno, Dedy Dwi Prastyo

02 Bivariate Binary Probit Model Approach for Birth Attendance and Labor Participation in West Papua
Ayu Tri Septadianti, Vita Ratnasari, Ismaini Zain

03 Parameter Estimation and Hypothesis Testing on Bivariate Generalized Poisson Regression
Dian Kusuma Wardani, Purhadi, Wahyu Wibowo

04 Scour Analysis at Seawall in Salurang, Sangihe Islands Regency,
North Sulawesi
Eunike Irene Kumaseh, Suntoyo, Muh.Zikra

05 Longitudinal Tobit Regression Modelling Stroke Patients With Trauma/Injury HeadTrauma
Evy Annisa Kartika S, Ismaini Zain, Vita Ratnasari

06 Multilevel Structural Equation Modeling For Evaluating The Effectiveness Of Remuneration In ITS Surabaya
Farisca Sustani, Bambang W. Otok, Vita Ratnasari

07 Cox Proportional Hazard Model with Multivariate Adaptive Regression Spline
Hendra Dukalang, B. W. Otok, Ismaini Zain, Herlina Yusuf
13 Validity of Physics Module Using Cooperative Learning Model With Peer Assessment
Sri Hartini, Mustika Wati, Sayidah Mahtari, Hayatul Mu'awwanah

14 Syiar Fisika Melalui Sosial Media: An Effort to Change the Habit of The College Students in The Use of Social Media
Toni Kus Indratno, Ginanjar A. Muhamad, Yulien Akhmad Zein

CHEMISTRY

01 Synthesis of in-house PEDOT/PSS dispersion and its performance on OPV device
Anang WM Diah

02 Chitosan-Key Lime Film for Food Preservation
Azlan Kamari, Al Luqman Abdul Halim, Helwa Fathi Hadzi, Nor Halida Mohamad Yahaya

03 Indonesian Natural Zeolites as potential Adsorbent in Waste Cooking Oil Regeneration
Dewi Yuanita Lestari, Dyah Purwaningsih, Antuni Wiyarsih

04 QSAR Study Of Antimalaria Of Xanthone Derivatives Using Multiple Linear Regression Methods
Dhina Fitriastuti, Jumina, Iqmal Tahir and Pria Atmoko

05 Compound Analysis Of Kembang Bulan (Tithonia diversifolia) Leaves
Amanatie

06 Development of LiMnO2 Cathode Materials for Lithium Battery
Dyah Purwaningsih

07 Modification Of Lac Insect Secretion By Using Adipic Acid As Matrix In Preparation Of Biocomposite
Eli Rohaeti, Mufidyono, Rochmadi

08 Preparation And Characterization Of Cobalt Oxide Supported Tin Oxide (CoOx@SnO2) As Photocatalysts
Etiefbriani, A.K. Prodjosantoso, Cahyorini Kusumawardani

09 Effect Of Existence Zn2+ And Cu2+ Ions On Extraction Efficiency Of Gold(III) Using Polyethylene Glycol
Gatut Ari Wardani, Sri Juari Santosa, Indriana Kartini

10 Comparative Study On The Impact Of Synthesis Route To The Photocatalytic Activity Of ZnO-SiO2 From Rice Husk Ash
Is Fatimah
COMPOUND ANALYSIS OF KEMBANG BULAN (Tithoniadiversifolia) LEAVES

Dr. Amanatie

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Yogyakarta State Universitas
* Corresponding author, tel: +62813-3641-4338, email: amantie@uny.ac.id

Abstract—This study aimed at analyzing the compounds in chloroform fraction of Tithonia diversifolia leaves using maceration method and further analyzing the compounds based on the UV-Vis spectroscopy, IR and GC-MS analyses. Extract of Tithonia diversifolia leaves were macerated with methanol. Methanol extract obtained from the maceration was then evaporated and partitioned with n-hexane and chloroform. Chloroform fraction was further evaporated and separated using GCC guided by TLC. The compounds obtained from GCC were identified by using TLC with 3 different types of eluent mixture.

The showed that the isolation of compound which was analyzed using UV-Vis spectroscopy gave the maximum wavelength (λ_max) at 220.80 nm and 400.20 nm. IR spectrum showed functional groups C=O carbonyl, –OH hydroxylate, C-O ester, and C-H aliphatic. The result of GC-MS analysis showed that secondary metabolite compound which was isolated has a similarity index (SI) to 17β-(acetyloxy)-21methyl-5α-estran-3-one of 75 with a purity of 69.53%.

Keywords: compound, analysis, Tithonia diversifolia leaves

I. INTRODUCTION

As a tropical country, Indonesia has a large amount of plant species thriving in its region. Not only plants used for food and for industrial export, but also plants that can be used in the field of medicine for natural treatment. Thus, today many alternative treatments using various types of herbs are found in Indonesia.

Medical treatment with natural ingredients has existed for hundreds of years and cannot be removed from the daily life of Indonesian people. One of the competitive advantages of this treatment is that the side effects are relatively small compared to the chemical treatment. In addition, traditional medicines are easy to obtain and can be processed easily by almost everyone. This suggests that the treatment through natural ingredients can still compete at present time despite the rapid advances in science and technology. Furthermore, with the great advancement of technology many scientists start optimizing the utilization of various medicinal plants for more efficient treatments. One of the natural plants which is often prescribed, in traditional medicine is Kembang Bulan (Tithoniadiversifolia). This plant usually grows wild in steep places, such as on cliffs, river banks, and ditches. In addition, this annual plant can grow well in places with high light-intensity at the height of 5-1500 meters above sea level. Kembang Bulan has a straight-rectangle stems, three-branched leaves with greenish veins and others branching off, yellow flowers, and the roots are in the form of a taproot (Hutapea, et al., 1994).

Based on various studies it is known that the leaves Kembang Bulan (Tithoniadiversifolia) can be used to treat stomach-ache, bloating, bloody injury, and as anti-inflammatory and antidiabetic. Further research reveals that the leaves of this plant contain alkaloids, terpenoids, flavonoids, saponins, tannins, and polyphenols. These compounds are included in the class of secondary metabolites, thus allowing these plants to be used for medical treatment.

This study was carried out to isolate and identify secondary metabolites from ethyl acetate fraction of Kembang Bulan leaves. The extraction method used in this study was maceration. This method was chosen because it has several advantages, i.e. there quired tools are relatively simple; it can be used for extraction in large quantities, the cost is relatively low, and it can be performed at room temperature without heating. This process technically used methanol solvent and the result was then partitioned using n-hexane. Methanol was used as a solvent because it can dissolve almost all kinds of secondary
metabolites. The process of compound separation was conducted using Gravity Column Chromatography (GCC) method. To determine the purity of the compound and the GCC eluent a Thin Line Chromatography (TLC) test was conducted. To determine the characteristics of the structure, a later analysis of pure compounds resulted from the isolation was conducted using UV-Vis spectrophotometry, infrared (IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy. The result of the study is expected to optimize the use of the *Kembang Bulan* as traditional and modern medicine.

The study aims to:

1. analyze the compound of *Kembang Bulan* (*Tithonia diversifolia*) leaves using Thin Line Chromatography (TLC) and Gravity Column Chromatography (GCC), UV-Vis (Ultraviolet Visible) spectrophotometer, IR (infrared) spectroscopy, and GC-MS Spectroscopy; and

2. reveal the type of compound in the ethyl acetate fraction of *Kembang Bulan* (*Tithonia diversifolia*) leaves by maceration method and separation by chromatography.

The benefits that can be drawn are, among others:

1. to provide information on how to analyze the chloroform fraction of *Kembang Bulan* (*Tithonia diversifolia*) leaves;

2. to provide information concerning the chemical compound in ethyl acetate fraction of *Kembang Bulan* (*Tithonia diversifolia*) leaves.

3. to contribute in developing science in chemistry, especially organic chemistry and pharmaceuticals.

II. REVIEW

*Kembang Bulan* flower can be classified as follows (Hutapea, 1997:297):

Division: Spermatophyta  
Sub Division: Angiospermae  
Class: Dicotyledoneae  
Ordo: Asterales  
Family: Asteraceae  
Genus: Tithonia  
Species: *Tithonia diversifolia*

*Kembang Bulan* (*Tithonia diversifolia*) is an upright shrub that can reach a height of 3 meters, have sprouts, and crept on the ground. Generally, this plant grows wild on steep places, for example on the cliffs, river banks, and ditches. This plant grows easily in places with a height of 5-1500 meters above sea level, and is also an annual plant that likes bright places and grows well in a place exposed to direct sunlight (Sulistijawati and Didi, 2001).

According Taofik, et.al (2010), the extract of *Kembang Bulan* leaves contains an active ingredient that can kill the *eriophyidae* (mites that usually infest fowl). Based on his study, it is known that the extract of *Kembang Bulan* leaves has a toxicity level for *eriophyidae* mites at 2.2922 ppm during a 72-hour treatment. Using the phytochemical and High Performance Liquid Chromatography (HPLC) analysis, the study has shown that the extract contains flavonoids, alkaloids, and tannins. From this result it is known that *Kembang Bulan* plants have a potential to be utilized as botanical insecticide which is very economical.

*Kembang Bulan* is generally utilized traditionally for its leaves. The leaves contain active substances that can be used in medical treatment. Apart from being a botanical insecticide, a lot of research has also proven that the content of the active compounds in the leaves *Kembang Bulan* (*Tithonia diversifolia*) can be used as medicine to treat antidiabetic, anti-virus, anti-malaria, liver, and strep throat. The plant of *Kembang Bulan* is shown in Figure 1.
III. RESULTS AND DISCUSSION

Separating KembangBulan (Tithonia diversifolia) Leaves by Maceration and Partition

The result of the separation and partition leaf maceration Kembang Bulan (Tithonia diversifolia) are shown in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Separation method</th>
<th>Solvent</th>
<th>Extract Volume concentrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 kg dried powder of</td>
<td>Maceration</td>
<td>Methanol</td>
<td>115 mL</td>
</tr>
<tr>
<td>Kembang Bulan leaf</td>
<td>Partition</td>
<td>ethyl acetate</td>
<td>50.6 mL</td>
</tr>
</tbody>
</table>

1. Separation of Ethyl acetate with Chromatography

Separation technique performed by using Vacuum Liquid Chromatography is the first process to obtain secondary metabolites. In this technique a column of 9.5 cm diameter and 5 cm was used with tools such as a vacuum pump. Previously, the concentrated ethyl acetate extract using silica gel Merck 60 (mesh). Eluent used in this process was 100% n-hexane, n-hexane: ethyl acetate in the ratio of n-hexane: ethyl acetate = 6 : 4; Rf 0.4; acetone : ethyl acetate= 4 : 1 Rf 0.875; and dichloromethane : acetone= 9 : 1 Rf 0.425.

The subsequent separation process was conducted the gravity column chromatography. Fraction 1 results which have been concentrated and then impregnated with silica gel Merck 60 (200-400 mesh). The column used for chromatography is 30 cm in length with a diameter of 2.5 cm. Eluent used in this process a mixture of n-hexane : ethyl acetate in a ratio of 6:4.

The generated eluent was then collected in a 20 mL bottle fraction. This process resulted in 60 bottles of fractions, and each fraction was then identified using Thin Layer Chromatography (TLC) with an interval of 3 bottles. Fractions were grouped by determining the similar value of Rf, thus 6 groups of fractions, i.e. F1 (3-7), F2 (8-12), F3 (13-17), F4 (18-20), F5 (21-40), and F6 (41-60) were obtained. Of the six groups of the fraction, fraction F6 (41-60) was concentrated.

Fraction F6 (bottles 41-60) was concentrated further separation by TLC because the results have not shown single spot. The fraction of silica gel was impregnated using Merck 60 (mesh). The separation was carried out using n-hexane eluent: ethyl acetate in the ratio of 6: 4. The generated eluent was accommodated within 4 ± 5 mL bottle fractions and fractions obtained 32 bottles. Each fraction was further identified using Thin Layer Chromatography (TLC) with the interval of one bottle.

Based on the similarity value of Rf, all fractions were grouped into two groups, namely F(6A) fraction (no. 1-12) and F(6B) (no. 13-32). At TLC chromatogram, F6-A (1-12) showed a single spot so that the group of this fraction was further concentrated for the purity test.

The process of gravity column chromatography was carried out to obtain the components of secondary metabolite compounds in chloroform fraction of Kembang Bulan (Tithonia diversifolia) leaf which is
simpler. The column used here was with a diameter of 2 cm. A total of 1.00 g concentrated chloroform of *kembarung bulan* (*Tithonia diversifolia*) leaf that had been diluted with a little mixture of eluent n-hexane: ethyl acetate (6:4) and the stationary phase in the form of a mixture of silica gel Merck 60 (200-400 Mesh), resulting in 60 bottles of fractions.

The separation pattern of the whole fraction bottles was observed using TLC under UV light using the same eluent mixture. Bottles with the same separation pattern and Rf value can be combined and grouped, thus resulting in three groups of fractions.

Based on the TLC chromatogram purity test, the results showed a single stain on every kind of eluent (Table 2).

<table>
<thead>
<tr>
<th>Figure</th>
<th>Eluent</th>
<th>Rf value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>n-hexane : ethyl acetate (6 : 4)</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>acetone : ethyl acetate (4 : 1)</td>
<td>0.875</td>
</tr>
<tr>
<td>C</td>
<td>dichloromethane : acetone (9 : 1)</td>
<td>0.425</td>
</tr>
</tbody>
</table>

From the results it can be concluded that compound 2 separation results in a relatively high purity that can be further analyzed by UV-Vis, IR spectrophotometer, and GC-MS spectrometers.

3. Data Analysis

UV-Vis Spectrophotometer

UV-Vis spectrophotometer used to determine the maximum wavelength of compounds under analysis. The results of measurements of these compounds in methanol showed the maximum absorption wavelength at 220.80 nm and 400.20 nm.

![Figure 2 UV-Vis spectra of isolated compounds](image)

IR Spectrometer

Infrared spectroscopy (IR) used to determine the presence of functional groups contained in the isolated compounds. The analysis of IR spectra of isolated compounds are shown in Table 3.

<table>
<thead>
<tr>
<th>Wavelength(cm⁻¹)</th>
<th>Estimated Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3464.15</td>
<td>O-H Carboxyl</td>
</tr>
<tr>
<td>2970.38 ; 2931.80 and 2877.79</td>
<td>C-H aliphatic</td>
</tr>
<tr>
<td>1743.65</td>
<td>C=O Carbonyl</td>
</tr>
<tr>
<td>1458.18 and 1381.03</td>
<td>C-H aliphatic</td>
</tr>
<tr>
<td>1265.30</td>
<td>C-O ester</td>
</tr>
</tbody>
</table>
GC-MS Spectroscopy

The GC-MS spectroscopy method was used to determine the molecular weight and structure of the isolated compounds. The result of analysis with GC-MS spectroscopy is shown in Figure 3, while the GC-MS chromatogram data of isolated compounds are presented in Table 4.

![Figure 3. GC-MS Spectroscopy of isolated compounds](image)

<table>
<thead>
<tr>
<th>Peak no</th>
<th>Rt (second)</th>
<th>% Area</th>
<th>Estimated compound</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.520</td>
<td>0.47</td>
<td>bis (2-ethyl-hexyl) phthalate</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>36.347</td>
<td>69.53</td>
<td>estran-3-one, 17-(acetyloxy)-2-methyl-(2α,5α,17β)</td>
<td>75</td>
</tr>
</tbody>
</table>

Based on the above chromatogram, the mass spectra of peak 1 has a base peak of 149 with a molecular weight of 390 and indicates the similarity index (SI) with the fragmentation patterns of bis (2-ethyl-hexyl) phthalate compound of 95. The mass spectrum of the isolated compound is shown in Figure 4.

![Figure 4. Mass Spectrum of Peak 1 of the isolated compound](image)

The mass spectrum of Peak 2 has a base peak of 43 with a molecular weight of 332 and indicates the similarity index (SI) with the fragmentation patterns of estran-3-one, 17-(acetyloxy)-2-methyl-(2α,5α,17β) compound of 75. The mass spectrum of the isolated compound is shown in Figure 5.

![Figure 5. Mass Spectrum of Peak 2 of the isolated compound](image)
The aim of this analysis with GC-MS spectroscopy is to determine the purity of isolated compound and determine the molecular weight fragment of its functional group. GC-MS spectroscopic data generated from the isolated compound two peaks. The highest peak is the Peak 1 with an abundance of 30.47% and a retention time of 35.520 minutes and has the m/e of 390. Peak 2 has an abundance of 69.53% with a retention time of 36.347 minutes and has the m/e of 332. Peak 2 is then the dominant compound because peak 2 has a greater abundance percentage than Peak 1.

Regarding the mass spectra (M+) 390 in Peak 1 and (M+) 332 in Peak 2, there is no peak in mass spectra; this is because the particles had shorter life time and had no time to reach the ion collector so that molecule could not be detected and only the products of fragmentation showed the peak in mass spectra (Fessenden and Fessenden, 1986).

Peak 2, with an abundance of 69.53% and m/e of 332, has similarities with 17β-(acetoxy)-2α-methyl-5α-estran-3-one. This is supported by the fact that SI of 75 as well as the fragmentation pattern and m/e mass spectra which appeared were similar to the fragmentation pattern and m/e mass spectra of 17β-(acetoxy)-2α-methyl-5α-estran-3-one. However, in this case, the similarity index was not very big.

Peak 1, with an abundance of 30.47% and m/e of 390, has similarities with bis (2-ethylhexyl) phthalate. This is supported by the fact that SI of 95 as well as the fragmentation pattern and m/e mass spectra which appeared were similar to the pattern of fragmentation and m/e mass spectra of bis (2-ethylhexyl) phthalate.

The fragmentation patterns of isolated compounds found in the analysis were 17β-(acetoxy)-2α-methyl-5α-estran-3-one and bis (2-ethylhexyl) phthalate. The fragmentation patterns of 17β-(acetoxy)-2α-methyl-5α-estran-3-one are 332 (M+), 272, 257, 121, 94, 81, and 43. The fragmentation patterns of 17β-(acetoxy)-2α-methyl-5α-estran-3-one are shown in Figure 6.

**Fragmentation Patterns of Peak 2**

\[
\begin{align*}
(M+)^+ & \quad \rightarrow \quad (M+)^+ \\
&m/e = 332
\end{align*}
\]

\[
\begin{align*}
&\quad \rightarrow \quad (M+)^+ \\
&m/e = 272
\end{align*}
\]

\[
\begin{align*}
&\quad \rightarrow \quad (M+)^+ \\
&m/e = 257
\end{align*}
\]

\[
\begin{align*}
&\quad \rightarrow \quad (M+)^+ \\
&m/e = 123
\end{align*}
\]

\[
\begin{align*}
&\quad \rightarrow \quad (M+)^+ \\
&m/e = 121
\end{align*}
\]

C-36
Meanwhile, the fragmentation patterns of bis(2-ethyl-hexyl) phthalate are 390 (M'), 279, 168, and 149. The fragmentation patterns of bis (2-ethyl-hexyl) phthalate are shown in Figure 7.

**Figure 7. Fragmentation of Peak 1**

The extraction method in this study is macerated by dissolving the powder with methanol solvent. Methanol was chosen to be the solvent because it is widely used in the extraction process and is able to dissolve all the preliminary and secondary metabolites. In addition, methanol also has a low boiling point of 64.7°C, so that it will be easily evaporated.

As much as 0.5 kg *KembangBulan* leaf powder was macerated using approximately 1 liter of technical methanol for 2 x 24 hours long, while being shaken occasionally. The powder that has been macerated remacerasi process is done only once at the same time. The methanol extract was then separated from *KembangBulan* leaf powder and concentrated using Buchii evaporator to obtain a concentrated methanol extract as much as 215 mL.

**Separating the Chloroform Extract using Gravity Column Chromatography (GCC) Method**

The separation process was conducted by using gravity column chromatography (GCC). Before processing, the column should be packed first, and the extract used should be as much as 1.00 grams, because the diameter of the column was just 2 cm wide. The solvent used in this process...
was selected by trial and error method, with two solvents mixed by TLC. The TLC resulted in an appropriate eluent i.e. a mixture of n-hexane and ethyl acetate in a ratio of 6:4. In 20 bottles of fraction were obtained from this process, each of which were then identified using the TLC, eluted using a mixture of n-hexane and ethyl acetate with the ratio 6:4.

Furthermore, the concentrated methanol extract was partitioned using chloroform. The partitioning process aimed to separate compounds based on the polarity of the more-specific secondary metabolites. The concentrated methanol extract was partitioned using n-hexane and then the rest of the methanol in this partition was again partitioned using chloroform. The ethyl acetate used in this partitioning process was separating funnel. The partitioning process was repeated three times, each with the ratio of 6:4 between n-hexane and ethyl acetate. The partitioning process resulted in as much as 215 mL ethyl acetate fraction. Then this fraction is evaporated to produce concentrated chloroform fraction as much as 110.6 mL.

The next stage was the separation process using chromatographic techniques with Vacuum Liquid Chromatography, Gravity Column Chromatography (GCC), and Thin Layer Chromatography (TLC). Prior to the separation, the ethyl acetate fraction concentrated in advance using silica gel was impregnated intended that the compound in the fraction bound to the silica gel so that secondary metabolites can be eluted only with a suitable solvent in the separation process with GCC. Thin Layer Chromatography (TLC) function to determine the appropriate eluent to be used in the process of GCC, as well as to test the purity of the isolated compounds.

The TLC resulted in the appropriate eluent, i.e. a mixture of n-hexane and ethyl acetate with a ratio of 6:4. This process generated 20 bottles of fraction, which were then identified with TLC from each bottle of fraction using a mixture of n-hexane and ethyl acetate with the ratio of 6:4. The 20 bottles of fraction resulted from TLC were grouped based on the pattern of separation and the same value of Rf, so that there were 5 groups/fractions, namely I (1-2), II (3-4), III (5-8), IV (9-13) and V (14-20). Group/fraction V (14-20) was assumed to produce a single node so that this group of bottles was identified to be further examined.

From fraction V (14-20), the results were then gathered into one and dried, in order to obtain as much as 0.1 gram. This fraction showed a single node on the chromatogram, so that a further test for purity using TLC with three kinds of eluent i.e. n-hexane : ethyl acetate (6:4) (fraction A), acetone : ethyl acetate (4:1) (fraction B), and dichloromethane : acetone (9:1) (fraction C).

Separation with Vacuum Liquid Chromatography clicking to use tools such as a vacuum pump to accelerate the rate of the eluent. Eluent used include 100% n-hexane, n-hexane: ethyl acetate with the ratio of 6:4; 4:1; 9:1. ethyl acetate 100%, and acetone 100%. Eluent-column eluent is passed on by the increase in polarity then vacuum and collected in bottles fractions. Thus obtained 20 bottles, each bottle is identified using Thin Layer Chromatography (TLC) with a mixture of n-hexane eluent: ethyl acetate in a ratio of 6:4. Based on the results of TLC Rf similarity then 8 bottles fractions were grouped into two fractions, namely fraction A, fraction B and Fraction C. Based on the chromatogram, selected fractions A for further separation using column chromatography Gravity 1.

The separation process with CCG 1 aims to obtain more pure fractions with a single stain on the TLC plate. Eluent used in the separation process is a mixture of n-hexane: ethyl acetate in a ratio of 6:4. This process produces 20 bottles, then be identified using TLC techniques. Based on the results 1 TLC chromatogram, taken one of the most dominant fraction group and have the same price of Rf (0.2) is the fraction F6A. These groups combined and concentrated fractions and tested for purity using TLC techniques. The purity of the test is known that has not produced a single stain on a TLC plate.

Separation process of CCG2 using the eluent a mixture of n-hexane: ethyl acetate in the ratio of 6:4. In this separation process produces 20 bottles of fractions, then identified using TLC techniques. Furthermore, the fractions were grouped by similarity price Rf and obtained two groups of fractions. Then the selected group of the most dominant fraction is the fraction of Rf 0.45. These groups combined and concentrated fractions and tested for purity using TLC techniques.

Test purity by TLC technique using the eluent mixture of chloroform with 3 kinds of comparisons among others (6:4), (4:1), (9:1). The value of Rf calculations on this test can be seen in Appendix 2. A relatively pure compounds in the yellow-green room temperature.

**Analysis using UV-Vis, IR spectrometer, and GC-MS spectrometer**

C-38
Analysis with UV-Vis spectrophotometer aimed to investigate the electronic transition and the chromophore group in the identified compounds. Chromophore group is a functional group that can absorb ultraviolet radiation near the visible region. Solvent used in this analysis was methanol, since methanol can dissolve the sample well and do not absorb ultraviolet radiation. The results of the analysis using UV-Vis spectrophotometer showed the maximum wavelength (λmax) at 402.0 nm and 664.5 nm.

The Infrared (IR) spectrometer analysis aimed to determine the functional groups contained in the isolated compounds. Based on the IR spectra of isolated compounds showed an -OH group at 3429.59 cm⁻¹, CH aliphatic at 2951.62 cm⁻¹ and 2839.31 cm⁻¹, group C=C in 1644.01 cm⁻¹, -CH3 in 1405.86 cm⁻¹, and C=O at 1018.12 cm⁻¹.

IV. CONCLUSION

Based on the discussion above some conclusions can be drawn as follows:

1. Analysis compound in the leaves KembangBulan (Tithonia diversifolia) using a UV-Vis spectrophotometer showed the maximum wavelength (λmax) at 220.80 nm and 400.20 nm. Based on the analysis of IR spectrometer it is known that the compound contains -OH group, aliphatic CH, the C=O ester group, and the C=C double bond.

2. Mass spectrum of GC-MS shows the m/e value of 332 which is similar to 17β-(acetyloxy)-2a-methyl-5a-estr-3-one with the abundance of 69.53%. The secondary metabolite compound which can be isolated from chloroform fraction of KembangBulan (Tithonia diversifolia) leaves is steroid.

ACKNOWLEDGMENT

Author gratefully thanks to Rector of UNY due to the funding support

REFERENCES