HAMBURAN CAHAYA DALAM SISTEM KOLOID
Teori dan Instrumentasi

Suparno, MAppSC.,PhD
HAMBURAN CAHAYA DALAM SISTEM KOLOID
Teori dan Instrumentasi

Oleh: Suparno, M.AppSc., PhD

Editor: Prof. Dr. Mundilarto, M.Pd

Pusat Pengembangan Instruksional Sains (P2IS)
Fakultas Matematika dan Ilmu Peagetauhan Alam
Universitas Negeri Yogyakarta
Karangmalang, Depok, Sleman, Yogyakarta. 55281

©Hak Cipta 2012 pada penulis.
Hak Cipta dilindungi undang-undang. Dilarang memperbanyak sebagian atau seluruh buku ini dalam bentuk apapun, baik secara elektronik maupun mekanik termasuk memfoto copy, merekam atau dengan sistem penyimpanan lainnya tanpa izin tertulis dari penerbit.

Edisi Pertama
Cetakan pertama, 2012

ISBN: 978-602-99834-3-2
Kata Pengantar

Perkembangan industri makanan, minuman, farmasi, pewarnaan, painting, coating, dan printing dalam dua dasa waris terakhir menunjukkan peningkatan yang sangat cepat. Semua industri itu melibatkan system koloid baik ditinjau dari bahan dasar dalam bentuk partikel koloid maupun prosesnya dalam bentuk larutan koloid. Dalam proses produksi sejak peristiapan bahan sampai pengendalian kualitas produk memerlukan proses karakterisasi. Dalam proses karakterisasi system koloid secara riil dalam bentuk larutan initial teknik hamburan cahaya memegang peran yang sangat vital.


Yogyakarta, 3 Juli 2012

Suparno, M AppSc, PhD
Penulis
Daftar Isi

Halaman Judul
Kata Pengantar
Daftar Isi

Bab I
Hamburan Cahaya dalam Koloid
1.1. Industri Berbasis Koloid 1
1.2. Peran Hamburan Cahaya dalam koloid 2
1.3. Aplikasi Bidang Lain 5

Bab II
Teori Hamburan Cahaya
2.1. Mekanisme Hamburan Cahaya 9
2.2. Hamburan Cahaya untuk Penentuan Ukuran Partikel 11
2.2.1. Static Light Scattering 11
2.2.1.1. Hamburan Rayleigh 12
2.2.1.2. Hamburan Rayleigh-Gans-Debye 14
2.2.1.3. Hamburan Mie 16
2.2.2. Dynamic Light Scattering 18
2.3. Hamburan Cahaya untuk Penentuan Muatan Partikel 21
2.3.1. Elektrophoresis 21
2.3.2. Laser Doppler Electrophoresis 23
2.3.3. Phase Analysis Light Scattering 27

Bab III
Instrumentasi Hamburan Cahaya
3.1. Instrumentasi Hamburan Cahaya dalam Penentuan Ukuran Partikel 31
3.1.1. Sumber Cahaya 32
3.1.2. Spektrometer 34
3.1.3. Sistem Deteksi 36
3.1.4. Sistem Analisis Data 38
3.1.5. Sistem Hamburan Cahaya Fiber Optik 39
3.1.6. Sistem Hamburan Cahaya dengan Banyak Probe 41
3.2. Sistem Hamburan Cahaya untuk Penentuan Muatan Partikel 42
3.2.1. Instrumentasi Electrophoresis 43
3.2.2. Instrumentasi Laser Doppler Electrophoresis 44
3.2.3. Instrumentasi Laser Doppler Electrophoresis dengan Fiber Optik 46
3.2.4. Instrumentasi Phase Analysis Light Scattering 49

Bab IV

Probe Fiber Optik untuk Hamburan Cahaya

4.1. Transmisi Cahaya dalam Fiber Optik 51
4.2. Ragam Fiber Optik 56
4.3. Lensa GRIND 57
4.4. Singlemode Fiber Optic Probe 59
4.5. Pembuatan Fiber Optic Probe 61
4.5.1. Merangkai Fiber Optic dengan Konektor 61
4.5.2. Koplingantara Fiber Optik dengan Lensa GRIND 63

DAFTAR PUSTAKA 65
GLOSARIUM 68
INDEKS 69
BAB I
Hamburan Cahaya dalam Larutan Koloid

1.1. Industri Berbasis Koloid

Merasa awal abad ke 21 berbagai macam industri di Indonesia mengalami perkembangan yang sangat signifikan. Produk-produk baru berupa makanan dan minuman menyebar di pasaran sejalan dengan tumbuhnya bisnis waralaba (franchise). Industri kosmetik dan obat-obatan mengalami perkembangan yang pesat dengan tumbuhnya apotek-apotek yang melayani klien 24 jam sehari. Industri percetakan (printing) yang membutuhkan tinta baik indoor maupun outdoor pendukung dunia advertising dan percetakan koran dan majalah juga mengalami perkembangan yang dahsyat. Begitu pula industri pengecatan (painting) yang membutuhkan bahan pewarna dan pelapisan (coating) yang membutuhkan bahan pelapis, keduanyu tumbuh pesat sejalan dengan pertumbuhan ekonomi masyarakat.


Dengan teknik ini ukuran partikel terlarut bisa ditentukan sehingga homogenitas larutan dari segi ukuran partikel yang terlarut bisa lebih terjaga. Homogenitas ukuran partikel terlarut sangat penting bagi industri obat-obatan dan farmasi karena berpengaruh langsung terhadap khasiatnya. Dalam bidang painting dan coating homogenitas berpengaruh terhadap kehalusan permukaan. Dalam bidang pewarnaan homogenitas bahan
sangat kecil itu. Takaran udara dari dalam silinder tersebut masing-masing. Bila dipaksakan maka lensa yang berbentuk 2mm dan panjang 6mm itu akan pecah.
