pengetahuan bahan pangan hewani
dan hasil olahannya
Daftar Isi

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PENGANTAR</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>DAFTAR ISI</td>
<td>v</td>
</tr>
<tr>
<td>1.</td>
<td>DAGING</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pengantar (1), Komposisi (1), Nilai nutrisi daging (2), Struktur daging (3), Pengempukan (6) Pelayuan (7), Pengawetan daging (8), Pigmen daging (9), Perubahan warna daging (10), Pengasapan daging (11), Flavor (13), Pemasakan daging (13), Perubahan daging selama pemasakan (13).</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>UNGGAS</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Pengantar (17), Jenis (17), Nilai nutrisi (18) Kualitas (19), Pemotongan dan pendarahan (20).</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>IKAN</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Pengantar (21), Ikan (21), Struktur ikan (22) Pemilihan ikan (24), Penanganan dan penyimpanan (24), Perubahan pada ikan (26), Faktor-faktor penyebab kerusakan (27), Jenis dan sifat (28), Kerang-kerangan (37).</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>LIPIDA</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Pengantar (46), Sumber (46), Struktur dan komposisi (47), Sifat umum (48), Sifat fisis (50) Sifat kimia (53), Nilai nutrisi dan daya cerna (55), Kerusakan lemak dan minyak (57), Perubahan lemak selama pemanasan (60), Absorbsi lemak (61), Emulsi lemak (61), Hasil olahan lemak (62)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>TELUR</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Pengantar (67), Struktur (67), Komposisi dan nutrisi (69), Kelas dan kualitas (70), Penyimpanan telur (70), Fungsi telur (72).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PUSTAKA</td>
<td>73</td>
</tr>
</tbody>
</table>
4. Lipida

LEMAK & MINYAK

PENGANTAR

Termasuk lipida adalah lemak, wax, fosfolipida dan sebagainya. Kelompok lipida yang penting dalam pengolahan makanan adalah lemak atau lemak pangan. Lemak merupakan sumber energi berklori tinggi, yaitu 4.000 kalori setiap pound lemak murni atau kira-kira 9 kalori setiap gram lemak murni. Lemak dapat diperoleh dari sumber tanaman disebut lemak nabati dan dari sumber hewan disebut lemak hewani. Lemak yang berbentuk padat pada suhu kamar disebut lemak, sedang lemak yang berbentuk cair pada suhu kamar disebut minyak.

SUMBER

Tanaman.

Pada umumnya lemak nabati diambil dari bagian tanaman yang banyak mengandung lemak. Lemak nabati dapat berbentuk padat disebut lemak dan berbentuk cair disebut minyak. Ter masuk lemak padat nabati misalnya lemak coklat atau cocoa butter, sedang minyak nabati misalnya minyak jagung, minyak kelapa, minyak kedele, minyak biji kapas, minyak kacang, minyak bunga matahari, minyak zaitun atau olive oil.

46
Hewan.
Sumber hewani dapat diperoleh dari hewan darat dan hewan air. Lemak hewani dapat diambil dari bagian hewan yang banyak mengandung lemak dan juga pada hati ikan yaitu hati ikan cod. Lemak hewani dapat berbentuk padat disebut lemak dan berbentuk cair disebut minyak. Termasuk lemak padat hewani misalnya lard atau lemak babi diambil dari daging babi, mentega diambil dari lemak susu, tallow atau lemak sapi diambil dari daging sapi. Minyak hewani misalnya minyak hati ikan yang diambil dari hati ikan cod.

STRUKTUR DAN KOMPOSISI

Struktur.
Lemak dan minyak yang penting dalam bahan makanan berupa gliserida-gliserida misal gliserol yang membentuk ester dengan asam-asam lemak. Dalam lemak dan minyak ketiga gugus hidroksil dari molekul gliserol membentuk ikatan ester, oleh karena itu nama kimianya adalah trigliserida di sebut juga gliserida netral karena semua gugus hidroksilnya telah membentuk ester.

\[
\begin{align*}
H_2C - O & \quad HO - C - R_1 & H_2C - O & \quad C - R_1 \\
HC - O & \quad HO - C - R_2 & HC - O & \quad C - R_2 + 3 H_2O \\
H_2C - O & \quad HO - C - R_3 & H_2C - O & \quad C - R_3
\end{align*}
\]
Gliserol Asam lemak Trigliserida Air

Pada umumnya lemak dan minyak yang ada di alam ketiga asam lemak penyusun trigliserida yang teresterkan oleh gliserol ini berbeda antara satu asam lemak dengan asam lemak lainnya. Asam lemak adalah asam lemak karboksilat alifatis. Karena termasuk golongan karboksilat maka terdapat gugus karboksil (- COOH) pada ujung rantainya. Alifatis artinya susunan rantai atom-atom karbon terbuka, dapat ter susun lurus tanpa cabang atau bercabang. Rumus umum asam lemak adalah sebagai berikut :

\[
\begin{align*}
C_{n 2n+1}H_{2n+1}COOH & \quad (\text{asam lemak jenuh}) \\
C_{n 2n-1}H_{2n-1}COOH & \quad (\text{asam lemak tidak jenuh})
\end{align*}
\]
Komposisi.

Komposisi lemak dan minyak bervariasi, untuk minyak na bati dipengaruhi oleh iklim, jenis tanah, varietas tanaman, sedang lemak hewani dipengaruhi oleh makanan, musim, jenis hewan.

SIFAT UMUM
Pigmen, warna.
Trigliserida murni tidak berwarna, tidak berasa, tidak berbau, tidak larut dalam air. Warna, bau, rasa lemak dan minyak disebabkan oleh adanya fraksi non-minyak. Warna lemakan/minyak disebabkan oleh adanya bermacam-macam pigmen.

Warna gelap pada lemak disebabkan oleh oksidasi tokoferol atau vitamin E yang ada dalam lemak. Warna coklat biasanya ada dalam minyak yang dibuat dari bahan tanaman yang sudah busuk atau rusak, warna coklat ini timbul dari adanya pemecahan protein dan molekul-molekul karbohidrat. Kadang-kadang terdapat warna hijau pada minyak yang dibuat dari tanaman berklorofil, warna ini sulit dihilangkan dan tidak disukai.

Lemak padat, lemak cair.
Asam-asam lemak dalam bahan makanan mempunyai jumlah atom karbon genap dari 4 sampai 28, dapat dalam bentuk asam lemak bebas maupun membentuk ester dengan gliserol. Berdasar ada tidaknya ikatan rangkap pada rantai karbon dalam asam lemak, maka asam lemak dikelompokkan menjadi dua yaitu (1) asam lemak jenuh atau saturated fatty acid, dan (2) asam lemak tidak jenuh atau unsaturated fatty acid.
Asam lemak jenuh. Asam lemak jenuh adalah asam lemak yang tidak mempunyai ikatan rangkap. Asam lemak jenuh yang mempunyai atom C₄, C₆, C₈, C₁₀ bersifat dapat menguap disebut the volatile fatty acids sedang yang mempunyai atom C₁₂ atau lebih bersifat padat pada suhu kamar. Sifat kelarutannya dalam air akan menurun sejalan dengan makin panjang rantai atom C atau makin banyak jumlah atom C dalam asam lemak jenuh dan secara praktis asam lemak jenuh yang mengandung atom C₁₂ atau lebih bersifat tak larut dalam air.

Asam lemak tidak jenuh tinggi sangat penting dalam kerja alat tubuh atau fungsi fisiologis. Asam tersebut tidak bisa disintesa cukup cepat dalam tubuh, oleh karena itu harus ditambahkan dari luar bersama makanan. Asam-asam tersebut seringkali disebut sebagai asam lemak esensial.

\[
\begin{align*}
 &\text{bentuk trans} \\
 &\text{bentuk cis}
\end{align*}
\]

Dari kenyataan itu maka cara untuk merubah lemak cair menjadi lemak padat atau untuk mengeraskan lemak didasarkan pada penjenuhan ikatan rangkap yang terdapat didalam...
TABEL 4.1. : TITIK CAIR DAN SUMBER BEBERAPA ASAM LEMAK

<table>
<thead>
<tr>
<th>Jumlah atom C</th>
<th>ASAM LEMAK</th>
<th>T.Cair (°C)</th>
<th>SUMBER</th>
<th>l = lemak, m = minyak</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Butirat</td>
<td>-7,9</td>
<td>1.susu</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kaproat</td>
<td>-3,4</td>
<td>1.susu, 1.kelapa, m.palem</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kaprilat</td>
<td>16,7</td>
<td>m.kelapa, m.palem, 1.susu</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Kaprat</td>
<td>31,6</td>
<td>m.kelapa, m.palem, 1.susu</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Laurat</td>
<td>44,2</td>
<td>m.kelapa, m.palem, 1.susu</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Miristat</td>
<td>54,4</td>
<td>m.kelapa, m.palem, l.hewani, l.nabati</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Palmitat</td>
<td>62,9</td>
<td>semua l.hewani & l.nabati</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Stearat</td>
<td>69,6</td>
<td>l.hewani & beberapa l.nabati</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Arachidat</td>
<td>75,8</td>
<td>m.kacang</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bebenat</td>
<td>79,9</td>
<td>m.kacang, m.mostar, m.lobak</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Lignosera</td>
<td>84,1</td>
<td>m.kacang & minyak & murni</td>
<td></td>
</tr>
</tbody>
</table>

TIDAK JENIH

16	Palmitoleat	0,5	m.hewan laut, m.nabati & m.hewani
18	Oleat	16,3	l.nabati & l.hewani
18	Elaidat	43,7	l.hewani
18	Linoleat	-5,0	m.kacang, m.biji kapas, m.rami
18	Linolenat	-11,0	m.rami & m.biji xan lain
20	Arakkidonat	-49,5	l.hewani
22	Erusat	33,7	m.rami, m.mostar, m.tembakau

Sumber:

Asam lemak tidak jenuh. Sebagian besar lemak nabati disusun oleh asam lemak tidak jenuh sehingga berbentuk cair pada suhu kamar, sebaliknya lemak hewani sebagian besar disusun oleh asam lemak jenuh terutama yang beratom C tinggi sehingga berbentuk padat pada suhu kamar. Lemak dan minyak yang terdapat dalam bahan pangan berada pada fase dispersi berbentuk tetes-tetes atau globula/butiran, sebagai penyelubung fase ini adalah terdapatnya bahan emulsifier seperti protein, fosfolipida, monogliserida dan digliserida.

SIFAT FISIS

Sifat-sifat fisik lemak dan minyak sering digunakan untuk identifikasi lemak/minyak. Karena banyak mempunyai sifat fisik maka untuk identifikasi lemak/minyak perlu mengukur lebih dari satu sifat-sifat fisis tersebut.

Kelarutan.

Lemak dan minyak pada umumnya tidak larut dalam air karena tidak mempunyai gugus polar dan karena adanya asam lemak berantai karbon panjang.
Viskositas.

Berat jenis.
Kenaikan berat jenis sebanding dengan kenaikan tingkat ketidak-jenuhan dan semakin panjang rantai karbon penyusun asam lemak. Pengukuran berat jenis lemak dan minyak biasanya dilakukan pada suhu 25°C, sedang untuk lemak yang mempunyai titik cair tinggi dilakukan pada suhu 40-60°C.

Titik cair.

Kristal, plastis.
Lemak dapat bersifat plastis apabila dalam lemak terkandung 10% - 50% molekul gliserida pada yang tercampur dengan trigliserida cair. Bentuk dan ukuran kristal ini akan mempengaruhi sifat lemak pada makanan roti dan kue. Lemak bersifat plastis artinya mudah dibentuk atau dicek caracteres atau dapat dibuat krim dengan cara pelunakan melalui pencampuran dengan udara. Apabila lemak dipanaskan, jumlah kristal-kristal yang terdistribusi dalam lemak cair akan berkurang dan jumlah lemak cairnya akan bertambah sehingga lemak menjadi lunak. Apabila jumlah cairan melebihi jumlah kritis maka lemak akan bersifat mengalir. Apabila jumlah kritis melebihi jumlah kritis maka lemak akan menjadi keras dan rapuh.
Lemak yang terdapat dalam merupakan campuran kompleks dari gliserida-gliserida, yang masing-masing mempunyai ti
titik cairnya sendiri-sendiri sehingga lemak mempunyai beber-
para titik cair. Misal tripalmitin mempunyai tiga titik ca-
rir yaitu bentuk \(\gamma = 45^\circ \text{C} \), bentuk \(\alpha = 56^\circ \text{C} \), bentuk \(\beta = 65,5^\circ \text{C} \). Karena mempunyai beberapa titik cair yang berbeda-beda maka akan menyebabkan tripalmitin mulai mencair pada suhu 45\(^\circ\)C kemudian segera membeku kembali. Lemak beku ini apabila dipanaskan perlahan-lahan akan mencair kembali pada suhu 56\(^\circ\)C dan akan membentuk kristal. Kristal-kristal itu akan mencair kembali pada suhu 65,5\(^\circ\)C. Sifat (lemak) yang demikian itu disebut polimorfisme, yang hanya terjadi pada senyawa-senyawa karbon beratantai panjang. Perlakuan pada suhu yang berbeda-beda akan berpengaruh pada bentuk kristal yang dihasilkan, dapat membentuk kristal halus atau kasar sesuai suhu pemanasan. Sifat ini dimanfaatkan dalam pengolahan makanan misalnya salad dressing, ice cream dan sebagainya sesuai tujuan pengolahannya.

Ideks bias.

Indeks bias atau indeks refraksi adalah derajat pembiasaan sinar yang terjadi apabila cahaya dilewatkan dari medium transparan ke medium lain. Pengukuran indeks bias lemam dan minyak sering dilakukan karena pengukurannya cepat dan akurat, pengukuran ini untuk mengetahui kemurnian lemak dan minyak. Pengukuran biasanya dilakukan pada suhu 25\(^\circ\)C atau apabila dilakukan pada suhu yang lain perlu dikoreksi, alat yang digunakan adalah Abbe Refractometer Penurunan indeks bias sebanding dengan kenaikan suhu. Kenaikan indeks bias sebanding dengan pertambahan panjang rantai atom karbon dan peningkatan ketidak-jenuhan.

Titik asap, titik bakar, titik terbakar.

Titik asap atau smoke point adalah suhu dimana lemak atau minyak memberikan asap tipis kebiruan apabila lemak/minyak dipanaskan dalam wadah terbuka, terbentuknya asap ini mudah diamati. Titik bakar atau flash point adalah suhu dimana campuran uap dan udara mulai menyala. Titik terbakar atau fire point adalah suhu dimana minyak atau lemak sudah terbakar secara tetap. Data titik asap, titik bakar, titik terbakar beberapa lemak/minyak disajikan pada tabel 4.2.

Titik keruh.

Apabila campuran minyak dan pelarutnya (asam asetat glasial, beberapa jenis alkohol) dipanaskan sampai terlarut sempurna kemudian didinginkan hingga minyak mulai terpisah akan terjadi kekeruhan. Suhu dimana kekeruhan yang pertama kali dapat dideteksi disebut titik keruh. Penentuan titik keruh dapat dilakukan dengan berbagai cara misalnya Valenta test dan Crismer test. Valenta test, menggunakan asam asetat glasial sebagai pelarutnya. Crismer test,
TABEL 4.2: TITIK ASAP, TITIK BAKAR, TITIK TERBAKAR BEBERAPA MINYAK

<table>
<thead>
<tr>
<th>MINYAK</th>
<th>T. Asap (°C)</th>
<th>T. Bakar (°C)</th>
<th>T. Terbakar (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarak (dimurnikan)</td>
<td>200</td>
<td>298</td>
<td>335</td>
</tr>
<tr>
<td>Jarak (dehidrojenasi)</td>
<td>176</td>
<td>299</td>
<td>337</td>
</tr>
<tr>
<td>Jagung (kasar)</td>
<td>178</td>
<td>294</td>
<td>346</td>
</tr>
<tr>
<td>Jagung (dimurnikan)</td>
<td>227</td>
<td>326</td>
<td>359</td>
</tr>
<tr>
<td>Biji rami (kasar)</td>
<td>163</td>
<td>287</td>
<td>353</td>
</tr>
<tr>
<td>Biji rami (dimurnikan)</td>
<td>160</td>
<td>309</td>
<td>360</td>
</tr>
<tr>
<td>Zaitun (murni)</td>
<td>199</td>
<td>321</td>
<td>361</td>
</tr>
<tr>
<td>Kedele (kasar)</td>
<td>181</td>
<td>296</td>
<td>351</td>
</tr>
<tr>
<td>Kedele, ekst. (kasar)</td>
<td>210</td>
<td>317</td>
<td>354</td>
</tr>
<tr>
<td>Kedele (dimurnikan)</td>
<td>256</td>
<td>326</td>
<td>356</td>
</tr>
<tr>
<td>Perilla (kasar)</td>
<td>161</td>
<td>302</td>
<td>359</td>
</tr>
<tr>
<td>Perilla (dimurnikan)</td>
<td>178</td>
<td>320</td>
<td>363</td>
</tr>
</tbody>
</table>

Menggunakan metil alkohol sebagai pelarutnya. Fryer dan Weston memodifikasi cara Crismer dengan menggunakan pelarut etil alkohol 92% dan amil alkohol 92% dalam perbandingan campuran yang sama.

SIFAT KIMIA

Beberapa pengujian kimia lemak dan minyak sudah dikembangkan untuk menentukan komposisi kimia lemak dan minyak. Pengujian ini akan membantu identifikasi lemak/minyak dan untuk mendeteksi adanya pemalsuan. Semua lemak dan minyak menunjukkan suatu kisaran nilai, oleh karena itu kadang-kadang diperlukan pengujian lebih dari satu macam cara uji. Beberapa cara uji yang umum digunakan antara lain:

Angka Reichert Meisll.

Angka/bilangan Reichert Meisll atau Reichert Meisll-Number (RMN) adalah jumlah (ml.) 0,1 N alkali (misal NaOH) yang dibutuhkan untuk menetralisir asam lemak volatil yang larut dalam air setiap 5 gram sampel lemak/minyak. Asam lemak volatil yang larut dalam air tersebut misal asam bu tirat (C₄) dan asam kaproat (C₆). Jadi RMN gunanya untuk mengukur asam lemak volatil yang larut dalam air.

Angka Polenske.

Angka/bilangan Polenske atau Polenske Number (PN) adalah jumlah (ml.) 0,1 N alkali yang diperlukan untuk menetralisir asam-asam lemak volatil yang tidak larut dalam air setiap 5 gram sampel lemak/minyak. Jadi PN gunanya untuk mengukur asam lemak volatil yang tidak larut dalam air.
Penentuan RMN dan PN dapat dilaksanakan bersama-sama pada sampel yang sama. Distilat asam lemak bebas yang larut dalam air dititrasi dengan KOH /NaOH, akan diperoleh jumlah (ml.) alkali yang merupakan RMN. Distilat asam lemak bebas yang tidak larut dalam air selanjutnya dilarutkan dalam etil alkohol, kemudian dititrasi dengan alkali diperoleh jumlah (ml.) alkali yang merupakan PN. Kedua cara uji diatas terutama dapat digunakan untuk membedakan mentega asli dengan mentega tiruan yang dibuat dari minyak kelapa dan juga untuk mendeteksi pemalsuan mentega yang dicampur dengan minyak lain. RMN terutama digunakan untuk mendeteksi pemalsuan mentega. Nilai RMN berkisar antara 24 - 34.

Angka Kirschner.

Angka/bilangan Kirschner atau Kirschner Value (KV) adalah jumlah (ml.) alkali (misalnya Ba(OH)$_2$, KOH, NaOH) untuk menetralkan asam lemak volatil yang garam peraknya larut dalam campuran etanol-air. Asam lemak bebas volatil dalam mentega terutama adalah asam butirat. KV akan mengukur jumlah garam-Ag dalam distilat RMN. Garam Ag-butirat larut dalam air, sedang garam dari (Ag - asam lemak volatil yang lain yang larut dalam air) bersifat tidak larut dalam air. Nilai KV mentega berkisar antara 19-26, KV minyak kelapa kira-kira 1,9 dan KV minyak palem sekitar 1, sedang lemak/minyak yang lain antara 0,1-0,2. Penentuan KV digunakan untuk membedakan margarin dengan mentega, yaitu untuk mengetahui ada tidaknya pemalsuan.

Angka penyabunan.

Angka/bilangan penyabunan atau Saponification Number (SN) adalah jumlah (mgr.) KOH yang dibutuhkan untuk menyabun 1 gram lemak atau minyak. Apabila KOH direaksikan dengan trigliserida maka 1 molekul trigliserida membutuhkan 3 molekul KOH agar trigliseridanya netral. Apabila trigliserida mengandung asam lemak berat molekul rendah atau asam lemak rantai pendek, maka molekul-molekul trigliserida yang ada dalam setiap 1 gram sampel akan lebih banyak dibanding trigliserida yang mengandung asam lemak rantai panjang. Akibatnya lemak/minyak yang lebih banyak mengandung trigliserida dari asam lemak rantai pendek mempunyai angka penyabunan lebih tinggi, karena memerlukan KOH lebih banyak untuk menetralkan semua trigliseridanya. Angka penyabunan dapat digunakan misalnya untuk identifikasi mentega. Mentega yang kadar butiratnya tinggi akan mempunyai angka penyabunan yang tinggi pula.

Angka Hehner.

Angka/bilangan Hehner atau Hehner Value (HV) adalah ukuran jumlah asam lemak yang tidak larut dalam air. Dari
uji angka penyabunan diketahui bahwa semua asam lemak sudah disabunkan. Untuk mengukur asam lemak yang tidak larut dalam air dapat diukur dari sabun hasil pengujian diasatas dengan cara (1) Alkoholnya dipisahkan dari filtrat dengan menguapkan alkohol tersebut, kemudian (2) Asam lemak yang larut dalam air dipisahkan dari sabun, dengan memisahkan sabun dalam air panas dan untuk melepaskan asam lemak dari sabun ditambahkan HCl pekat. Bila campuran hasil itu segera didinginkan maka asam lemak yang tidak larut dalam air akan memekat membentuk lapisan dibagian atas dari larutan, lapisan ini kemudian disaring, dikeringkan dan ditimbang, akan diperoleh Angka Hehner. Lemak/minyak yang mempunyai RMN tinggi akan mempunyai HV rendah.

Angka yodin.

Angka/bilangan yodin atau Iodin Number adalah jumlah (gram) yodin yang diserap oleh 100 gram lemak. Ikatan rangkap yang ada dalam asam-asam lemak tidak jenuh mudah berreaksi dengan yodin. Yodin (I₂) akan mengadisikatan rangkap asam lemak tidak jenuh yang bebas maupun yang berbentuk ester dengan gliserol dalam lemak. Jadi angka yodin digunakan untuk mengukur asam lemak tidak jenuh yang terdapat dalam lemak.

NILAI NUTRISI DAN DAYA CERNA

Kedalam margarin seringkali sudah ditambah vitamin A. Minyak nabati yang sudah dimurnikan dan dihidrogenasi hanya mengandung sedikit vitamin A; walaupun minyak tersebut dibuat dari bahan asal nabati yang banyak mengandung vitamin A misal hasil tanaman yang berwarna kuning.

Dalam plasma darah terdapat kolesterol dalam jumlah tertentu yang dibutuhkan oleh darah, tetapi penumpukan kolesterol yang berlebihan dalam plasma darah akan menyebabkan penyakit jantung yaitu atherosclerosis dan coronary. Jumlah kolesterol itu dapat diturunkan dengan cara memakan makanan yang banyak mengandung asam lemak tidak jenuh tinggi misal linoleat dan makanan yang sedikit mengandung asam lemak jenuh misal miristat dan palmitat. Demikian juga makanan yang hanya sedikit mengandung kolesterol akan menurunkan kolesterol.
<table>
<thead>
<tr>
<th>Nama</th>
<th>Berat Jenis</th>
<th>Titik Baku</th>
<th>Angka Asam</th>
<th>Angka Penyabun</th>
<th>Angka Iodin</th>
<th>Angka Reichert Meisll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almond</td>
<td>0,914 - 0,921</td>
<td>(-15) - (-20)</td>
<td>0,5 - 3,5</td>
<td>183,3 - 207,6</td>
<td>93 - 103,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Lemak sapi</td>
<td>0,895</td>
<td>31 - 58</td>
<td>0,25</td>
<td>196 - 200</td>
<td>35,4 - 42,3</td>
<td>0,25</td>
</tr>
<tr>
<td>Kenari hitam</td>
<td>0,918 - 0,921</td>
<td>keruh (-12)</td>
<td>8,6 - 9,0</td>
<td>190,1 - 191,5</td>
<td>141 - 142,7</td>
<td>-</td>
</tr>
<tr>
<td>Lemak susu</td>
<td>0,907 - 0,912</td>
<td>20 - 23</td>
<td>0,45 - 35,4</td>
<td>210 - 230</td>
<td>26 - 38</td>
<td>17,0 - 34,5</td>
</tr>
<tr>
<td>Minyak jarak (castor)</td>
<td>0,960 - 0,967</td>
<td>keruh (-12)</td>
<td>0,12 - 0,3</td>
<td>175 - 183</td>
<td>84</td>
<td>1,4</td>
</tr>
<tr>
<td>Lemon ayam</td>
<td>0,924</td>
<td>21 - 27</td>
<td>1,2</td>
<td>193 - 204,6</td>
<td>66 - 71,5</td>
<td>1,8</td>
</tr>
<tr>
<td>Minyak kelapa</td>
<td>0,926</td>
<td>14 - 22</td>
<td>2,5 - 10</td>
<td>253,4 - 262</td>
<td>6,2 - 10</td>
<td>6,6 - 7,5</td>
</tr>
<tr>
<td>Lemak coklat</td>
<td>0,964 - 0,974</td>
<td>21 - 23</td>
<td>1,1 - 1,9</td>
<td>192,8 - 195</td>
<td>32,8 - 41,7</td>
<td>0,3 - 1,0</td>
</tr>
<tr>
<td>Minyak ikan cod</td>
<td>0,922 - 0,931</td>
<td>(-3)</td>
<td>5,6</td>
<td>171 - 189</td>
<td>137 - 166</td>
<td>0,2</td>
</tr>
<tr>
<td>Minyak jagung</td>
<td>0,921 - 0,928</td>
<td>(-10) - (-20)</td>
<td>1,37 - 202</td>
<td>187 - 193</td>
<td>111 - 128</td>
<td>4,3</td>
</tr>
<tr>
<td>Minyak biji kapas</td>
<td>0,917 - 0,918</td>
<td>412 - (-13)</td>
<td>0,6 - 0,9</td>
<td>194 - 196</td>
<td>103 - 111,3</td>
<td>0,95</td>
</tr>
<tr>
<td>Minyak babi</td>
<td>0,934 - 0,938</td>
<td>27,10 - 29,90</td>
<td>0,5 - 0,8</td>
<td>195 - 203</td>
<td>47 - 66,5</td>
<td>0,5 - 0,8</td>
</tr>
<tr>
<td>Minyak biji rami</td>
<td>0,930 - 0,938</td>
<td>(-19) - (-27)</td>
<td>1 - 3,5</td>
<td>188 - 195</td>
<td>175 - 202</td>
<td>0,95</td>
</tr>
<tr>
<td>Minyak domba</td>
<td>0,937 - 0,953</td>
<td>32 - 41</td>
<td>1,7 - 14</td>
<td>195 - 196</td>
<td>48 - 61</td>
<td>-</td>
</tr>
<tr>
<td>Minyak zaitun</td>
<td>0,914 - 0,918</td>
<td>keruh +2</td>
<td>0,3 - 1,0</td>
<td>185 - 196</td>
<td>79 - 88</td>
<td>0,6 - 1,5</td>
</tr>
<tr>
<td>Minyak palem</td>
<td>0,924 - 0,858</td>
<td>35 - 42</td>
<td>10</td>
<td>200 - 205</td>
<td>49,2 - 58,9</td>
<td>0,9 - 1,9</td>
</tr>
<tr>
<td>Minyak kacang</td>
<td>0,917 - 0,926</td>
<td>3</td>
<td>0,8</td>
<td>186 - 194</td>
<td>88 - 98</td>
<td>0,4</td>
</tr>
<tr>
<td>Minyak Perilla</td>
<td>0,930 - 0,937</td>
<td>-</td>
<td>-</td>
<td>188 - 194</td>
<td>185 - 206</td>
<td>-</td>
</tr>
<tr>
<td>Minyak biji apium</td>
<td>0,924 - 0,926</td>
<td>(-16) - (-18)</td>
<td>2,5</td>
<td>193 - 195</td>
<td>128 - 141</td>
<td>0,6</td>
</tr>
<tr>
<td>Minyak biji labu</td>
<td>0,923 - 0,925</td>
<td>(-15)</td>
<td>-</td>
<td>188 - 193</td>
<td>121 - 130</td>
<td>4,45</td>
</tr>
<tr>
<td>Minyak lobak</td>
<td>0,913 - 0,917</td>
<td>(-10)</td>
<td>0,36 - 1,0</td>
<td>168 - 179</td>
<td>94 - 105</td>
<td>0,0 - 7,9</td>
</tr>
<tr>
<td>Minyak wijen (sesame)</td>
<td>0,919</td>
<td>(-4) - (-6)</td>
<td>9,8</td>
<td>188 - 193</td>
<td>103 - 117</td>
<td>1,1 - 1,2</td>
</tr>
<tr>
<td>Minyak kedele</td>
<td>0,924 - 0,927</td>
<td>(-10) - (-16)</td>
<td>0,3 - 1,8</td>
<td>189 - 193,5</td>
<td>122 - 134</td>
<td>0,5 - 2,8</td>
</tr>
<tr>
<td>Minyak bunga matahari</td>
<td>0,924 - 0,926</td>
<td>(-17)</td>
<td>11,2</td>
<td>189 - 193</td>
<td>129 - 136</td>
<td>0,5</td>
</tr>
<tr>
<td>Minyak kenari</td>
<td>0,925 - 0,927</td>
<td>(-15) - (-27)</td>
<td>2,5</td>
<td>190,1 - 197</td>
<td>139 - 150</td>
<td>0,92</td>
</tr>
<tr>
<td>Minyak ikan pauas</td>
<td>0,917 - 0,924</td>
<td>(-2) - 0</td>
<td>1,9</td>
<td>160 - 202</td>
<td>90 - 146</td>
<td>14</td>
</tr>
</tbody>
</table>

Lemak cukup lama tinggal di perut, oleh karena keberadaannya akan memperlambat pencernaan, akibatnya tidak cepat merasa lapar. Lemak yang mempunyai titik cair berbeda tampaknya mempunyai daya cerna yang berbeda pula. Lemak dengan titik cair 43°C atau lebih rendah mempunyai laju pencernaan cukup, misal lard mempunyai titik cair 43°C. Lemak dengan titik cair 49-55°C mempunyai laju pencernaan lebih lambat dan tidak semua lemak dapat diserap oleh saluran pencernaan, misal lemak domba mempunyai titik cair antara 49-51°C. Stearin murni mempunyai titik cair 60°C sehingga hanya sedikit yang dapat dicerna. Untuk meningkatkan daya cerna stearin dapat dicampur dengan minyak yang mempunyai titik cair lebih rendah.

LEMAK PENGAROMA

Lemak dapat digunakan sebagai pengaroma misal misal untuk bumbu, salad dressing, cakes; lemak ini diproses secara khusus dan mempunyai flavor sangat disukai misal mentega, lemak babi, minyak zaitun dan margarin. Margarin mempunyai aroma mirip dengan mentega, karena kedalam bahan dasar margarin ditambahkan diasetil dan susu fermentasi. Minyak jagung dan minyak biji kapas dapat digunakan untuk salad dressing sebagai pengganti minyak zaitun yang harganya mahal, tetapi tentu saja produk ini tidak beraroma minyak zaitun. Hal yang sama, fungsi mentega dalam pembuatan cake untuk membentuk tekstur yang baik, dapat digantikan dengan hidrogenated-fat dengan hasil yang sama baik.

KERUSAKAN LEMAK DAN MINYAK

Kerusakan lemak dapat terjadi selama penyimpanan, terutama apabila lemak banyak mengandung ikatan tidak jenuh dan kondisi penyimpanan yang menunjang perubahan kimia dalam lemak. Ketengikan merupakan salah satu jenis kerusakan yang sering terjadi dalam lemak/minyak. Perubahan yang terjadi selama proses ketengikan terutama berlangsung melalui dua cara yaitu (1) hidrolisis dan (2) oksidatif.
HIDROLISA

Hidrolisa lemak dapat terjadi oleh adanya air disamping lemak, dan dipercepat oleh asam, base dan ensim. Hidrolisa yang disebabkan oleh ensim akan merusak lemak menjadi asam lemak bebas dan gliserol. Akibatnya keasaman akan naik karena terjadi penumpukan asam lemak. Apabila terbentuk asam lemak bebas rantai pendek yang bersifat volatil akan menyebabkan bau tengik, misal butirat (\(\text{CH}_3\)) dan kaproat. Kaproat dan butirat merupakan asam lemak penyusun mentega. Terbentuknya butirat dan kaproat merupakan penanda kerusakan mentega, yang berarti pula mentega tidak layak untuk dimakan. Apabila terbentuk asam lemak bebas rantai panjang tidak menyebabkan bau tengik, kecuali apabila terjadi reaksi perubahan yang lain misal oksidasi. Asam - asam lemak rantai panjang tersebut misal stearat, palmitat dan oleat.

OKSIDASI

Nampaknya hanya lemak-lemak tidak jenuh yang terpengaruh oleh perubahan oksidatif. Lemak yang sudah dihidrogenasi dan lemak yang banyak mengandung asam lemak jenuh relatif tahan terhadap oksidasi. Teori oksidasi lemak yang masih dianut sampai sekarang adalah "adisi oksigen pada atom C disebelah atom C yang berikatan rangkap dalam rantai asam lemak ", menghasilkan hidroperoksid.

\[
\begin{align*}
\text{H} & \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \\
\text{O} & \quad \text{H} \quad \text{H} \\
\text{O} & \quad \text{H}
\end{align*}
\]

\(\text{H} \quad \text{C} \quad \text{C} \quad \text{C} = \text{C} \quad \text{C} \quad \text{C}
\]

Hidroperoksid, sebagian asam lemak

Hidroperoksid sendiri tidak berbau tengik, tetapi molekul-molekul ini mudah pecah menjadi molekul-molekul lebih kecil yang bersifat volatil. Molekul-molekul pecahan ini- lah yang menyebabkan bau tengik. Pemecahan hidroperoksid ini dipercepat oleh radiasi energi tinggi, energi panas, katalisator logam. Radiasi energi tinggi misal sinar ultra
violet yang terdapat dalam cahaya. Energi panas misal panas selama pemasakan. Katalisator logam terutama Fe dan Cu yang berasal dari alat pemasak dan pengolahan minyak dan juga logam-logam tersebut sudah dikandung oleh bahan dasar minyak, misal kedele banyak mengandung Fe dan Cu.

Selama proses ketengikan akan terjadi perubahan odor, flavor, warna, konsistensi lemak dan juga kerusakan vitamin A dan vitamin E.

REVERSI FLAVOR

Reversi adalah perubahan yang terjadi dalam lemak pangan selama proses pemurnian. Selama reversi timbul flavor yang tidak disukai, biasanya reversi akan diikuti proses ketengikan. Reversi berkembang selama lemak kontak dengan sinar ultra violet atau cahaya atau oleh panas. Reaksi reversi memerlukan sedikit oksigen dan katalisator logam seperti Fe dan Cu.

Prekursor utama pembentukan flavor hasil reversi dalam minyak adalah trigliserida yang mengandung asam linoleat. Senyawa-senyawa off-falvor yang terjadi selama reversi sangat bervariasi tergantung jenis lemak dan kondisi terjadinya perubahan tersebut. Misal minyak kedele, apabila mengalami reversi, pada awal proses akan timbul bau seperti "rumput kering" dan akhirnya minyak tersebut akan berbau "amis".

PENCEGAHAN KETENGIKAN OXIDATIF

Cara terbaik untuk melindungi lemak dari kerusakan ketengikan adalah menyimpan pada suhu dingin serta melindungi dari pengaruh sinar tertentu dan juga udara. Karena hanya sinar-sinar tertentu yang mengkatalisa oksidasi lemak, maka dapat menggunakan wadah atau pembungkus berwarna tertentu. Wadah atau pembungkus berfungsi mencegah lemak kontak dengan udara. Warna wadah atau pembungkus harus mempunyai sifat menyerap sinar-sinar aktif penyebab kerusakan. Untuk itu sering digunakan pembungkus dan botol gelas berwarna hijau dan plastik selulose berwarna kuning Apabila terpaksa menggunakan wadah dari logam, supaya dihindari penggunaan wadah yang terbuat dari logam Fe dan Cu logam ini merupakan pro-oksidan.

Kandungan gula yang tinggi akan mengurangi kecepatan ketengikan. Demikian pula antioksidan juga akan menurunkan kecepatan oksidasi. Dilihat dari mekanismenya, antioksidan dapat berfungsi sebagai (1) interseptor oksigen dan (2) mengikat prooksidan. Interseptor oksigen atau pengha-
lang oksigen dalam proses oksidasi, sehingga akan mematahkan rantai reaksi proses ketengikan. Interseptor oksigen sering disebut pula sebagai antioksidan primer, dapat diperoleh dari dua sumber yaitu alami dan buatan. Sumber alam paling banyak terdapat pada hasil nabati, yang paling banyak dijumpai adalah tokoferol atau vitamin E selain itu juga elastin, fosfatida, sesamol, gosipol dan asam askorbat. Sumber buatan yang sering digunakan secara komersial misal Butylated Hydroxy Anisole (BHA) dan Butylated Hydroxy Toluena (BHT).

Antioksidan pengikat prooksidan sering disebut antioksidan sekunder berupa antioksidan yang dapat mengikat logam-logam prooksidan. Karena mampu mengikat logam maka sering disebut juga sebagai sequestran, umumnya berupa asam asam organik dikarboksilat dan trikarboksilat. Termasuk jenis ini yang sering digunakan antara lain asam sitrat dan Etylene Diamine Tetra Acetat (EDTA).

PERUBAHAN LEMAK SELAMA PEMANASAN

Lemak akan mengalami perubahan apabila dipanaskan pada suhu terlalu tinggi. Terutama dengan pan-frying, sebagian lemak akan terjadi over-heating, disini gliserol akan terdenaturasi menjadi akroelin. Akroelin adalah senyawa volatil yang bersifat iritasi pada membran mukosa.

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{CH}_2 \\
\vert & \quad \vert \\
\text{CHOH} & \quad \text{CH} + 2 \text{H}_2\text{O} \\
\vert & \quad \vert \\
\text{CH}_2\text{OH} & \quad \text{C} = \text{O}
\end{align*}
\]

Gliserol \quad Akroelin \quad Air

Akroelin ini terdapat bersama-sama asap minyak, untuk itu sebagai media pan-frying sebaiknya digunakan lemak yang mempunyai titik asap tinggi. Meskipun digunakan minyak ber titik asap tinggi tetapi selama pemanasan akan terjadi penurunan disebabkan oleh adanya monogliserida dan digliserida dalam shortening untuk pembuatan cake. Disamping itu terbentuknya asam lemak bebas selama pemanasan juga menye babkan penurunan titik asap, demikian juga apabila luas permukaan yang kontak dengan udara terlalu luas menyebab kan penurunan titik asap.

Minyak setelah dipakai untuk meng goreng seringkali berubah menjadi lebih gelap, hal ini disebabkan oleh pengaruh kuning telur.
ABSORPSI LEMAK

Kelezatan dan daya cerna makanan yang digoreng dipengaruhi oleh absorpsi atau penyerapan minyak selama penggorengan. Penyerapan terendah akan memberikan hasil terbaik. Penyerapan minyak dipengaruhi oleh (1) waktu pemanasan, (2) luas permukaan, (3) sifat dan komposisi makanan. Suhu minyak tidak berpengaruh langsung pada jumlah minyak yang diserap selama penggorengan. Pada umumnya penyerapan akan lebih banyak apabila makanan yang dimasak lebih lama berada dalam minyak.

Adonan yang banyak mengandung gula akan lebih banyak menyerap lemak selama penggorengan. Kenaikan jumlah telur mnyebabkan produk lebih lunak, adonan lebih lengket akan menyerap minyak lebih banyak. Tetapi pengaruh protein tersebut sendiri apabila terjadi koagulasi akan berakibat membatasi penyerapan minyak.

Adonan yang dibuat dari tepung 'shoft wheat' akan menyerap minyak lebih banyak dibanding adonan yang dibuat dari tepung 'strong wheat'. Gluten yang mengembang akan lebih menurunkan penyerapan minyak daripada gluten yang tidak mengembang. Makin kecil luas permukaan, makin sedikit pula menyerap minyak.

Perbedaan jenis minyak tidak berpengaruh pada jumlah minyak yang diserap selama penggorengan.

EMULSI LEMAK

Istilah emulsi adalah suatu dispersi antara cairan dengan cairan yang lain, keduanya tidak saling larut, contoh emulsi antara minyak dan air. Antara minyak dan air mempunyai kecenderungan untuk berpisah karena perbedaan betrat jenis.

Emulsi alami yang terdapat dalam makanan misal susu dan krim serta kuning telur. Emulsi dalam masakan misal salad dressing, saus, krim sup, gravy. Untuk membuat emulsi bisa dilakukan dengan cara dikocok, diaduk, stirring, digiling. Dalam makanan, sebagai medium pendispersi misal air, susu, larutan cuka, sari buah; sebagai substansi terdispersi biasanya berupa lemak dan minyak.

EMULSI TEMPORER (SEMENTARA)

Apabila campuran minyak dan air dikocok akan membentuk suatu emulsi, setelah didiamkan partikel-partikel minyak akan bergabung dan memisahkan diri dari air. Emulsi yang demikian itu disebut emulsi temporer. Untuk mempertahankan
Emulsi ini adalah dengan cara seringkali dikocok atau emulsi tersebut segera digunakan. Contoh bahan makan yang mempunyai emulsi jenis ini adalah French dressing.

EMULSI PERMANEN (TETAP)

Dalam emulsi permanen paling tidak terdapat tiga substans yaitu (1) medium pendispersi, (2) substansi terdispersi, (3) emulsifier. Emulsifier atau stabilizer atau emulsifying agent akan membentuk lapisan tipis disekitar partikel terdispersi sehingga akan melindungi partikel tersebut terhadap kecenderunganannya untuk bergabung. Bahan-bahan yang dapat digunakan sebagai stabilizer antara lain kuning telur, telur utuh, gelatin, pektin, pasta pati, ka sein, albumin dan tepung-tepung halus misal paprika dan mostar.

Berdasarkan daya tarik emulsifier terhadap air dan minyak, terdapat dua tipe emulsi yaitu emulsi air dalam minyak dan minyak dalam air. Apabila emulsifier lebih larut dalam air maka akan menghasilkan emulsi minyak dalam air. Apabila emulsifier lebih larut dalam minyak, akan menghasilkan emulsi air dalam minyak.

HASIL OLAHAN LEMAK

Lemak dan minyak yang digunakan untuk pengolahan makanan, di alam tidak tersedia siap pakai, untuk itu perlu me misahkannya dari bahan-bahan lain, kemudian dimurnikan. Beberapa minyak/lemak diperoleh dari biji-bijian dan buah-buahan, dari hewan misal lard atau lemak babi diperoleh dari jaringan daging babi, mentega dibuat dari krim susu.

Berdasarkan keberadaan dalam bahan pangan, lemak didekakan menjadi invisible fats atau lemak tersembunyi dan visible fats atau lemak kasat mata. Invisible fat adalah lemak yang dimakan bersama-sama bahan asalnya, misal lemak dalam daging, telur, susu penuh. Visible fat adalah lemak yang sudah dipisahkan dari bahan asalnya, misal margarin dan bahan-bahan shortening.

MENTEGA

Mentega dibuat dari lemak susu atau krim yang sudah dipisahkan dari sebagian atau seluruh komponen-komponen lain dalam susu, kemudian dilakukan agitasi atau pengadukan Agitasi mekanis ini akan merusak lapisan protein yang me-
nyelubung glabel atau butiran lemak sehingga memungkinkan butiran-butiran lemak tersebut saling bergabung. Lemak dalam susu berbentuk emulsi minyak dalam air. Agitasi mekanis akan merusak emulsi minyak dalam air menjadi air dalam minyak. Susunan emulsi kira-kira 18% air terdispersi dalam 80% lemak, emulsi ini akan stabil karena terdapat sejumlah kecil protein yang berfungsi sebagai emulsifier.

Mentega dapat dibuat dari sweet cream atau sour cream. Mentega dari sour cream atau susu asam mempunyai flavor kurang. Susu asam dapat diperoleh dari susu yang rusak secara alami atau merusak sweet cream yaitu mengasamkan sweet cream, dengan cara menambahkan biakan murni bakteri asam laktat kedalam sweet cream pada tahap pasteurisasi. Pengasaman sweet cream akan memberikan hasil mentega dengan flavor dan daya simpan lebih baik, sebab mikroorganisme yang tidak dikehendaki yang mungkin ada sudah dirusak selama pasteurisasi. Sesudah pasteurisasi perlu dilakukan ripening agar terjadi fermentasi asam oleh bakteri pembentuk asam.

Mentega mudah menyerap odor dan flavor, sehingga mentega harus dilindungi dengan pembungkus dan dijauhkan dari bahan makanan yang mungkin melepaskan odor. Suhu penyimpanan mentega terbaik sekitar 2°C.

MARGARIN

Margarin dibuat dari satu atau lebih lemak hewani dan nabati serta bahan-bahan lain. Margarin dikembangkan pertama kali oleh Mege-Mouries seorang ahli kimia bangsa Perancis, sebagai jawaban atas saran Napoleon III untuk men-

Margarin merupakan emulsi air dalam minyak dan harus mengandung lemak tidak kurang dari 80%. Untuk memperoleh konsistensi yang diinginkan, maka minyak yang digunakan sebagian bahan dasar misal minyak kedele, minyak biji kapas harus dimurnikan dan sebagian ikatan tidak jenuhnya dihidrogenasi. Asam lemak tidak jenuh cenderung berbentuk cair pada suhu kamar sehingga untuk membuat soft-margarine seringkali ditambah minyak jagung atau minyak bung matahari yang mengandung asam lemak tidak jenuh lebih banyak.

Bahan-bahan lain yang diijinkan antara lain vitamin A, vitamin D, diasetil, lestitin, monogliserida, digliserida, bahan warna sintetis, garam, sitrat, benzoat. Diacetil berfungsi sebagai bahan pengaroma. Sitrat dapat sebagai asam sitrat atau jenis sitrat-sitrat yang lain. Benzoat dapat berupa Na-benzoat atau asam benzoat berfungsi sebagai pengawet, berkisar antara 0,1-1%.

Margarin yang baik adalah apabila bersih, beraroma segar dan sangat mirip dengan mentega yang termasuk kelas baik. Margarin yang diberi emulsifier lestitin akan membursa dan berwarna coklat seperti mentega, apabila dipanaskan. Sedangkan margarin tanpa lestitin tidak akan terjadi seperti itu. Semua hal-hal yang harus diperhatikan dalam prepra rasi dan penyimpanan margarin adalah seperti mentega.

LARD (LEMAK BABI)

Lard atau lemak babi adalah lemak yang dipisahkan dari jaringan berlemak pada daging babi. Kualitas lard dipengaruhi oleh beberapa faktor antara lain (1) bagian dari tubuh yang dibuat lard, (2) jenis makanan babi, (3) proses rendering.

Leaf lard merupakan jenis lard terbaik, dibuat dari lemak leaf fat yang diambil dari bagian abdomen atau rongga perut babi. Lard dibandingkan dengan lemak lain, keseragaman kurang, demikian pula sifat fisis yang lain misal flavor, odor, tekstur, sehingga tidak cocok untuk baking seperti pembuatan cake. Lard mudah menjadi tengik sehingga sering ditambah bahan antioksidan untuk lebih meningkat-

SHORTENING (MENTEGA PUTIH, HIDROGENATED SHORTENING)

Proses merubah sifat kimia lemak misallyesterifikasi se berarti merubah sebaran asam lemak pada molekul gliserida sehingga akan memperbaiki sifat plastis dan creaming untuk keperluan shortening dalam pembuatan cake.

Untuk meningkatkan kandungan asam lemak tak jenuh tinggi dalam bahan shortening sering dicampur dengan sejumlah kecil minyak nabati yang mengandung asam lemak tidak jenuh tinggi. Produk shortening yang dihasilkan tetap plastis tetapi dalam mixing akan bersifat lebih lunak bila di bandingkan shortening yang dihasilkan dari hidrogenasi parsil. Shortening yang sudah dicampur ini kemudian didinginkan dan diaduk untuk memasukkan udara dan memberikan tekstur yang baik.

Shortening merupakan suatu emulsi, agar stabil perlu di tambahkan emulsifier, atau dengan cara memodifikasi proses hidrogenasi agar dihasilkan monoglicerida dan digliserida. Monoglicerida dan diglicerida merupakan emulsifier, keberadaannya dalam shortening akan memungkinkan untuk membaikkan gula dan air dalam proporsi lebih banyak, tetapi monoglicerida dan diglicerida akan menurunkan nilai titik asap sehingga membuatnya kurang cocok untuk digunakan sebagai bahan penggoreng. Shortening yang dapat digunakan untuk membuat cake dan juga sebagai bahan penggoreng adalah jenis 'special shortening'.
MINYAK DAN MINYAK GORENG

Minyak yang umum dijual berasal dari buah kelapa, biji kapas, jagung, kedele, kacang tanah, zaitun, bunga matahari. Minyak zaitun mempunyai daya tarik khusus, karena mempunyai flavor yang sangat disenangi. Flavor minyak zaitun dipengaruhi oleh varietas zaitun, tingkat kemasakan zaitun dan kondisi pengolahan minyak.

Pengambilan minyak dari bahan asal dapat dilakukan melalui berbagai cara misal pengepresan, ekstraksi, pelarutan dengan solven dan sebagainya. Syarat minyak makan atau minyak masak dan salad yang baik harus jernih. Minyak mentah atau minyak kasar yang dihasilkan harus dimurnikan, dicuci, deodorisasi, sebelum digunakan, kecuali minyak zaitun atau olive oil tidak perlu dimurnikan. Minyak nabati terutama yang akan digunakan untuk salad dressing perlu di winterisasi (diturunkan suhunya hingga 5°C) kemudian minyak dipisahkan dari kristal-kristal minyak. Tujuan winterisasi ini adalah agar minyak tetap dalam bentuk cair pada suhu rendah.
5. Telur

PENGANTAR

STRAKTUR

Secara garis besar, telur disusun oleh tiga komponen utama yaitu (1) kuning telur atau yolk, (2) putih telur, dan (3) kulit telur atau shell.

Putih telur.

Putih telur atau albumin tersusun dari tiga bagian uta-ma yaitu (1) bagian tipis luar atau outhert thin, (2) bagi-an albumin tebal atau firm yang berada dibagian tengah, dan (3) bagian tipis dalam atau inner thin. Antara kuning telur dan bagian albumin tebal dihubungkan oleh chalaza,

Kuning telur.

Kuning telur terdapat pada bagian sentral dari telur, diselubungi oleh lapisan tipis yang disebut membran vitelini. Pada permukaan kuning telur terdapat bintik kecil berbentuk cakram disebut blasroderma sebagai benih untuk pembuahan. Kuning telur tersusun berlapis-lapis antara lapisan gelap atau kuning dan lapisan terang atau putih berganti-ganti, berbentuk seperti vas. Antara blasroderma dan pusat telur dihubungkan oleh latebra.

Kulit telur.

Kulit telur tersusun oleh dua bagian utama yaitu kulit membran dan kulit luar. Membran kulit tersusun oleh dua lapisan tipis berjajar disebut membran kulit luar dan membran kulit dalam, keduanya terpisah pada ujung telur yang tumpul dan membentuk ruang udara. Pada kulit telur terdapat lapisan kapur yang bercori atau porous, berfungsi sebagai jalan keluar/masuk gas selama pertumbuhan embryo se telah telur dibuahi. Pada bagian terluar kulit telur terdapat lapisan kutikula. Apabila telur dicuci maka lapisan
Telur 69

kutikula akan tercuci. Akibatnya lubang-lubang pada kulit telur akan terbuka, sehingga bakteri mudah masuk kedalam telur melalui lubang tersebut.

<table>
<thead>
<tr>
<th>Bahan</th>
<th>%</th>
<th>Komponen (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Telur utuh</td>
<td>100</td>
<td>Air</td>
<td>65,5</td>
<td>11,8</td>
<td>11,0</td>
</tr>
<tr>
<td>Putih telur</td>
<td>50</td>
<td>Protein</td>
<td>88,0</td>
<td>11,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Kuning telur</td>
<td>31</td>
<td>Lemak</td>
<td>48,0</td>
<td>17,5</td>
<td>32,5</td>
</tr>
<tr>
<td>Kulit telur</td>
<td>11</td>
<td>Abu</td>
<td>94,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Sumber: N.N. Potter, *Food Science*, 1973, halaman 417

KOMPOSISI DAN NUTRISI

Perbandingan komposisi antara putih telur dan kuning telur berbeda-beda tergantung jenis telur, umumnya mengan-
dung dua per-tiga bagian putih telur dan sepertiga bagian kuning telur. Bagian telur yang dapat dimakan tersusun oleh air (65-75%), protein (12-14%), lemak (10-12%) dan mineral serta vitamin (± 1%). Mineral yang terdapat dalam telur paling banyak berupa Fe, disamping P dan S. Vitamin vitamin dalam telur antara lain vitamin A, thiamin (B₁), riboflavin (B₂) dan vitamin D, juga vitamin E dan K. Bag-
gian yang tidak dapat dimakan berupa kulit telur besarnya kira-kira 11% berat telur.

Hampir semua bahan padatan yang terdapat dalam putih te-
 lur berupa protein. Mineral S banyak terdapat dalam putih telur sebagai komponen utama dari albumin.

Kuning telur banyak mengandung lemak, merupakan pelarut vitamin A, D, E, K dan fosfolipida termasuk emulsifier le-
sitin. Mineral Fe, P, Ca lebih banyak terdapat dalam kun-
ing telur. Vitamin yang larut dalam lemak banyak terda-
pat dalam kuning telur, disamping itu juga thiamin dan ri-
boflavin. Pigmen kuning tidak hanya terdiri dari karoten (provitamin A) saja, tetapi justru yang mendominasi warna kuning adalah xanthophyll (bukan merupakan provitamin A).

Selama pengolahan telur misal direbus, digoreng, dida-
dar tidak banyak menurunkan nilai nutrisi. Thiamin dan ri-
boflavin sedikit mengalami penurunan yaitu sekitar 8-15%. Daya cerna putih telur masak lebih baik dibanding putih te-
 lur mentah. Apalagi kuning telur mentah agar berhati-hati karena mudah terinfeksi oleh *Salmonella* yang dapat menim-
bulkan penyakit pada manusia. Mikroorganisme tersebut akan mati oleh panas selama pemasakan.
KELAS DAN KUALITAS

Kelas.

Menurut USDA, telur dikelompokkan menjadi tiga kelas yaitu kelas AA, A, B. Grade telur ditentukan oleh ukuran telur, sering dinyatakan dalam berat telur utuh termasuk kulit, per-dozen. Klasifikasi ukuran telur antara lain:

Kualitas.

Telur yang masih baik apabila diberdirikan maka kuning telur dan putih telur akan mempunyai kedudukan yang tetap dan kuning telur berada dibagian tengah. Telur yang sudah lama disimpan kepekatannya akan turun. Turunnya kualitas telur juga ditandai oleh semakin tebal bagian tipis putih telur dan bila dipecah maka telur akan menyebab pada daerah yang lebih luas. Disamping itu ruang udara menjadi lebih besar. Telur dianggap masih berkualitas baik apabila mempunyai rasa baik, nilai nutrisi baik, antara putih dan kuning telur mudah dipisahkan, menghasilkan kocokan yang baik.

PENYIMPANAN TELUR

Selama penyimpanan telur, terjadi beberapa perubahan antara lain (1) perubahan berat telur, (2) perubahan volume ruang udara, (3) perubahan berat jenis, (4) perubahan putih telur, (5) perubahan kuning telur, (6) perubahan flavor, (7) perubahan pH.

Turunnya berat telur disebabkan hilangnya air dari albumin, disamping juga CO₂ dan gas-gas lain. Selama penyimpanan telur akan mengalami penguapan melalui kulit telur yang berpori. Hilangnya air, selain menurunkan berat telur juga terjadi perubahan volume ruang udara menjadi membesar. Akibat lebih lanjut karena membesarnya volume udara atau penurunan berat telur menyebabkan berat jenis telur makin turun. Berat jenis adalah rasio berat per-volume. Hal ini bisa dimengerti karena volume telur tetap, sedang berat telur turun, sehingga rasio berat per-volume makin kecil. Protein dalam putih telur bagian albumin tebal berupa serat glikoprotein ovomucin, akan pecah menjadi molekul molekul lebih kecil, sehingga jumlah bagian albumin tebal makin turun. Akibat dari pemecahan itu maka bagian tipis lu
ar dan bagian tipis dalam menjadi bertambah tebal, karena mendapat tambahan dari hasil pemecahan serat glikoprotein ovomucin.

Selama penyimpanan telur, disamping air dalam putih te
lur menguap, sebagian yang lain akan masuk kedalam kuning
telur karena adanya perbedaan tekanan osmose antara kuning
telur dan putih telur. Akibat dari perpindahan air itu ma
ka volume kuning telur makin membesar. Adanya perubahan-
perubahan kuning telur dan putih telur selama penyimpanan
berakibat apabila telur dipecah, maka antara kuning telur
dan putih telur sulit dipisahkan. Perubahan flavor selama
penyimpanan mungkin disebabkan oleh adanya serangan mikro
organisme atau karena penyerapan flavor dari lingkungan.
Selama penyimpanan telur kehilangan CO₂ melalui pori-pori
kulit telur, menyebabkan telur menjadi lebih bersifat al-
kali atau pH menjadi naik, dari 6,0 - 6,2 menjadi 7,6 - 7,9.

Pengawetan.

Prinsip pengawetan telur adalah cara menangani telur se
demikian rupa hingga mempunyai masa simpan cukup lama tan
pa mengalami perubahan-perubahan, sehingga akan diperoleh
kondisi seperti telur segar. Secara garis besar pengawetan
telur dapat dilakukan dalam keadaan utuh bersama kulit dan
pengawetan telur pecah tanpa kulit.

Pengawetan telur utuh bersama kulit, pada prinsipnya
adalah untuk mempertahankan air dan CO₂ dalam telur.Untuk
mengawetkan telur utuh dapat dilakukan melalui berbagai ca
ra antara lain (1) perlakuan suhu rendah, (2) perlakuan
pada kulit telur, dan (3) perlakuan penggaraman.
Perlakuan suhu rendah yang dimaksud adalah menyimpan te
lur pada suhu (-1,5) - 0°C dengan kelembaban 85 - 90%.Penge
turkan kelembaban yang tinggi akan menahan hilangnya kar
bon dioksida dan air. Telur yang disimpan pada suhu dingin
ini akan mempunyai masa simpan selama enam bulan atau le-
bih. Penyimpanan dalam refrigerator akan bertahan selama
satu sampai dua minggu tanpa mengalami perubahan.
Perlakuan pada kulit. Tujuan perlakuan pada kulit telur
adalah untuk menutup pori-pori kulit telur. Perlakuan ini
dapat menggunakan berbagai bahan misal air kaca (Na-sili-
kat), air kapur, minyak nabati dan minyak mineral. Cara-
nya adalah telur direndam dalam larutan tersebut. Cara ter
baik diantara bahan-bahan tersebut adalah menggunakan air
kaca sebab tidak menimbulkan pengaruh bau dan rasa, sedang
air kapur akan memberikan hasil mempunyai rasa kapur.
Penggaraman dapat dilakukan secara basah dan semi basah.
Penggaraman basah, caranya telur direndam dalam larutan
garam jenuh. Penggaraman semi basah caranya telur dibalut
dengan campuran garam, air dan bahan pembalut. Bahan pem-
balut yang dapat digunakan antara lain batu bata, abu dan
tanah liat.

Pengawetan telur pecah tanpa kulit. Telur pecah dapat diawet secara terpisah antara putih telur dan kuning telur atau diawet dalam bentuk campuran antara putih telur dan kuning telur. Pengawetan telur pecah tanpa kulit dapat dilakukan dengan cara pembekuan dan pengeringan. Pengawetan cara beku biasanya diawali perlakuan pasteurisasi pada suhu 60 - 61,5°C selama 3½ menit. Putih telur akan mengalami kerusakan pada suhu tersebut. Untuk menghindari kerusakan tersebut maka putih telur perlu diturun kan pH-nya dengan cara ditambah 0,5 - 0,75% Na-polifosfat. Pengawetan pengeringan akan menghasilkan tepung telur.

FUNGSI TELUR

Pustaka

