Why some material is difficult to learn

Endah Retnowati
Why is learning difficult?

Productive (intrinsic) cognitive load

&

Wasteful (extraneous) cognitive load
Element interactivity

- **Elements of information**: all input attributes that could be encoded as memory traces

- Relations between elements of information define the **structure of information**

- Substantial WM capacity and conscious effort could be required for processing and encoding relations among elements of information (**WM load**)
Suppose 5 days after the day before yesterday is Friday. What day of the week is tomorrow?

Solve for x: \(ax = b \)
Transitive interference problems:
Halford, Maybery, and Bain (1986).

a is larger than b
b is larger than c

b is larger than c, is larger than b,
Which is the largest?

When the cognitive load is heaviest?
The integration of two premises requires considering all the elements (a, b, and c) and their relations concurrently bringing element interactivity to its highest point
This was the course that the student, whom the school that was criticized by the newspaper expelled, failed.

Four sentence nodes to parse at one time: the course was, the student failed, the school expelled, and the newspaper criticized.

Learning foreign language:
Vocabulary vs grammar
Cognitive load:

Load that performing a particular task imposes on working memory

(due to processing interacting elements of information)
Intrinsic cognitive load: (productive load)

- Determined by the degrees of interactivity between essential for learning elements of information (relative to levels of learner prior knowledge)
Example: These following problems have high intrinsic load

After 6 passengers had left the bus, 9 passengers remained. How many passengers were on the bus initially? (Change)

Peter’s book contains 50 pages. Peter read 15 pages in the morning. In the afternoon, he read the remaining pages and finished the book. How many pages did Peter read in the afternoon? (Group)
Managing intrinsic load:

- Simplify task by omitting some of the interacting elements initially
- Appropriately segment and sequence tasks from simple to complex
Extraneous Cognitive Load (Wasteful load):

• Determined by the manner in which the information is presented to the learners and the learning activities required of them
Efficient learning

Optimizing productive and minimizing wasteful cognitive load

Do not do anything that gets in the way of learning
Some source of wasteful cognitive load:

- Introducing unnecessarily too many new elements of information in WM
- Extensive search and match processes
- Insufficient guidance for novice learners
• Procedure of finding Angle X:

Angle DBE = Angle DEG - Angle BDE (external angle of triangle equal the sum of the opposite internal angles)

= $110^\circ - 50^\circ$

= 60°

Angle x = Angle BDE (vertically opposite angles are equal)

= 60°
Germane cognitive load

Cognitive activities enhancing learning (self-explanations, varying problem contexts etc.)

Part of intrinsic load

Germane resources: actual working memory resources devoted to productive learning (to intrinsic load)
<table>
<thead>
<tr>
<th>Types of cognitive load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic Load</td>
</tr>
<tr>
<td>Extraneous Load</td>
</tr>
<tr>
<td>Productive Load</td>
</tr>
<tr>
<td>Wasteful Load</td>
</tr>
</tbody>
</table>
No overload situation

Intrinsic Load

Extraneous Load
Cognitive overload due to excessive extraneous load
Cognitive Load Theory (CLT): reduce extraneous load, increase productive load
Cognitive load due to excessive intrinsic load
Cognitive Load Effects

<table>
<thead>
<tr>
<th>Cognitive load effects</th>
<th>Primary cognitive load course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal-free</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Worked example</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Split-attention</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Modality</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Expertise Reversal</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Guidance fading</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Completion</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Element Interactivity</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>Isolated/interacting elements</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>Imagination</td>
<td>Germane</td>
</tr>
</tbody>
</table>
Problem solving as an instructional method

Conventional problems present students with a set of given data (the known information) and a well defined goal.

Why conventional problems may not be an optimal instructional method?

What are alternatives?
Evidence of interference between conventional problem solving and schema acquisition:

Puzzle problems
(Maver & Sweller, 1982)

mathematics and science problems
(Sweller & Cooper, 1985; Sweller, Mewer, & Ward, 1983).
Solve for x: \(5x = -4 \)

\[x = \frac{-4}{5} \]

\[5x/5 = -4/5 \]

Solve for x: \(5x = -4 \)

If you don’t have a schema for solving a problem, you may use trial-and-error search or means-ends analysis
Means-ends analysis:

- The initial problem state
- The current problem state
- The goal state
- Defining differences between these states
- Finding moves to reduce those differences
- Considering sub-goals that may lead to a solution

Means-ends analysis often results in working backwards from the goal
Find a value for angle X
\[\text{goal } X^\circ \]
\[X^\circ = Y^\circ \]
\[\text{sub-goal } Y^\circ \]
\[\text{goal } X^\circ = Y^\circ \]
\[Y^\circ + Z^\circ + 50^\circ = 180^\circ \]
goal X°

$X^\circ = Y^\circ$

sub-goal Y°

$Y^\circ + Z^\circ + 50^\circ = 180^\circ$

sub-goal Z°
\[\text{goal } X^\circ \]
\[X^\circ = Y^\circ \]
\[\text{sub-goal } Y^\circ \]
\[Y^\circ + Z^\circ + 50^\circ = 180^\circ \]
\[\text{sub-goal } Z^\circ \]
goal X°

$X^\circ = Y^\circ$

sub-goal Y°

$Y^\circ + Z^\circ + 50^\circ = 180^\circ$

sub-goal Z°

$Z^\circ + 110^\circ = 180^\circ$
\[
\text{goal } X^\circ \\
X^\circ = Y^\circ \\
\text{sub-goal } Y^\circ \\
Y^\circ + Z^\circ + 50^\circ = 180^\circ \\
\text{sub-goal } Z^\circ \\
Z^\circ + 110^\circ = 180^\circ \\
Z^\circ = 70^\circ
\]
\[
\begin{align*}
goal \ X^\circ & \quad X^\circ = Y^\circ \\
& \quad \text{sub-goal } Y^\circ \\
& \quad Y^\circ + Z^\circ + 50^\circ = 180^\circ \\
& \quad \text{sub-goal } Z^\circ \\
& \quad Z^\circ + 110^\circ = 180^\circ \\
& \quad Z^\circ = 70^\circ
\end{align*}
\]
\[X = Y \]

\[Y + Z + 50 = 180 \]

\[Z + 110 = 180 \]

\[Z = 70 \]

\[X = 60 \]

\[Y = 60 \]
Means-ends analysis places high demands on working memory and requires large amounts of cognitive resources.

Problem solvers using means-ends analysis may successfully solve many problems of any identical type, yet effectively learn nothing from the activity.

Problem solving search can inhibit learning living no cognitive resources available to construct schemas.
Conventional problem-solving strategies are associated with a significant extraneous cognitive load that has to be eliminated or reduced in order to facilitate learning

HOW?

Extraneous cognitive load could be reduced when learners’ cognitive activities are directed to problem states and their associated moves
Conventional Problem

Find a value for angle X.
Redefine the problem so that the learner moves in a forward working manner

The learner should concentrate on each problem state and corresponding move: there should be no activities irrelevant to schema acquisition

Redefine the problem so that no obvious goal exist
Goal-free problem

Find the values of as many as angles as possible.
The goal free affect

Traditional problems:

Calculate the value of the parameter X.

Evidence: students continued to use the means-ends strategy on post-instruction test problems

Goal free (nonspecific goal) problems:

Calculate the values of as many parameters as you can

Evidence: students worked forward on post-instruction test problems: evidence of acquire schemas
Goal-free problems direct attention to those aspects of a problem that should assist in schema acquisition and automation.

Learner moves in a forward working manner similar to that used by expert problem solvers.

Forward working strategies impose low levels of cognitive load and facilitate learning.
Limitations

• Goal-free technique may not be appropriate under conditions where a very large number of moves can be generated.

• Goal-free technique is affective for problems that have a limited search space. In areas of high search space worked examples could be used.
Worked examples:

- Consist of a problem statement (the givens of a problem) followed by all the appropriate solutions steps (including the final answer)
- Provide an expert problem solution for a learner, typically presenting solution in a step-by-step manner
- Example-problem pairs consist of a mixture of worked examples and pure problems
- Example-problem pairs could be more motivating than studying worked examples alone
Solve for: \(\frac{2x - 3}{2} = -4 \)

\[
\frac{2x - 3}{2} \times 2 = 4 \times 2
\]

\[
2x - 3 = 8
\]

\[
2x - 3 + 3 = 8 + 3
\]

\[
2x = 11
\]

\[
\frac{2x}{2} = \frac{11}{2}
\]

\[
x = \frac{11}{2}
\]
Cooper and Sweller (1987)
Sweller and Cooper (1985)

\[(a+b)/c = d\] Solve for \(a\)

\[a + b = dc\]

\[a = dc - b\]

Students attend to each line (problem state) and the algebraic rule (or move) needed for the transformation to the next line. As in the case for the goal-free problems, this activity corresponds closely to that required for schema acquisition.

Zhu and Simon (1987): a three year mathematics course was completed in 2 years by emphasizing worked examples rather than conventional instruction.
Worked examples

• Eliminate the need for learners to engage in unproductive problem solving strategies
• Studying worked examples requires the learner to attend only each problem state and its associated move.
• Learners acquire forward working procedures similar to those used by experts
• Especially useful in the initial stages of the instruction with materials that are difficult to learn
Performance on transfer problems

• Sweller & Cooper (1985) did not observe a significant difference in performance on transfer problems between worked example and problem-solving groups.

• By simplifying the task and providing more example to study, they obtained better transfer for the worked examples group.

• Extensive practice is required to automate basic problem-solving steps before any improvement can be observed for different problems. Automation frees up cognitive capacity, allowing learners to make appropriate generalizations.

• If transfer is an aim of instruction, an extensive mix of worked examples and actual problem solving could be the most effective instructional...
Limitations

• Worked examples may not be effective with learners who already acquired problem-solving schemas in the domain.
• When a worked example is structured in a way that produces high extraneous cognitive load the benefit is reduced.
• Some worked examples demonstrated performance no better than solving conventional problems

Tarmizi & Sweller (1988)
Cognitive load effects

<table>
<thead>
<tr>
<th>Cognitive load effects</th>
<th>Primary cognitive load course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal-free</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Worked example</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Split-attention</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Modality</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Expertise Reversal</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Guidance fading</td>
<td>Extraneous</td>
</tr>
<tr>
<td>Element Interactivity</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>Isolated/interacting elements</td>
<td>Intrinsic</td>
</tr>
<tr>
<td>Imagination</td>
<td>Intrinsic</td>
</tr>
</tbody>
</table>
Split-Attention Effect.
Integrated Instructions
Goal free and worked example effects:

Solving goal-free problems and studying worked examples require the learner to attend only to teach problem state and its associate move.

Some worked examples demonstrated performance no better than solving conventional problems.
Tarmizi & Sweller (1988)
In some situations, worked examples may require significant cognitive resources to be processed.

Suggestions?

Restructuring examples:
Breaking down explanations of complex procedures into smaller elements.

What if smaller explanatory modules still impose significant cognitive load?
Procedure for finding Angle X:
Angle DBE = Angle DEG - Angle BDE (external angles for a triangle equal the sum of the opposite internal angles)

= 110° - 50°
= 60°

Angle X = Angle DBE (vertically opposite angles are equal)
= 60°
Geometry problems:

- Diagrams accompanied by brief textual statements
- Neither text nor diagrams are intelligible in isolation
- Understanding requires mental integration of text and diagrams
Split attention: searching and matching elements from the text to the appropriate entities on the diagram.

Solution?

Physically integrating textual information with the related diagram
Figure 2. Integrated geometry problem and solution.
We assume that the tool is located at the origin. Firstly, we have to instruct the machine to quickly go to the point A. The NC command for a quick movement *without* cutting is \(G00 \) and is denoted with a broken line. We also have to instruct the machine where to go. Point A has the absolute position (20,30). The NC command for a movement to the point A is \(X20 \ Y30 \). A straight line cut from A to B is required. The NC command for a straight line cut is \(G01 \) and is denoted by an unbroken line. We now have to instruct the machine to cut to point B. To achieve this the NC command for the point B is required. The NC command for point B is \(X-20 \ Y10 \). The complete command for this movement is \(G01 \ X-20 \). The NC command to return the tool back to the origin is simply \(G00 \ X0 \ Y0 \). This completes the NC program code for this job.
Split attention situation: learners have to mentally integrate multiple sources of information and this integration overburdens limited working memory capacity.
We now have to instruct the machine to cut the point B. Firstly, we have to instruct the machine to quickly go to the point A. The NC command for a quick movement without cutting is G00 and is denoted with a broken line. We also have to instruct the machine where to go. Point A has the absolute position (20,30). The NC command for a movement to the point A is X20 Y30. The complete command for this movement is therefore G00 X20 Y30.

A straight line cut from A to B is required. The NC command for a straight line cut is G01 and is denoted by an unbroken line. A straight line cut from A to B is required. The NC command for a straight line cut is G01 and is denoted by an unbroken line.

To achieve this the NC command for the point B is required. The NC command for the point B is X-20 Y1. The complete command for this movement is G01 X-20 Y1.

The complete command for this movement is therefore G01 X-20 Y1.

The NC command to return the tool back to the origin is simply G00 X0 Y0.
1. The Starter consists of a start push button, a stop push button, and a switch activated by the coil.
2. Pressing down the start push button closes the circuit and allows the current to flow through the coil.
3. The energizer coil closes the switch, which provides an alternative closed circuit for the coil to that provided by the start push button. The start push button now can be released without breaking the current flow through the coil.
4. The light is operational, as the closed switch provides a closed circuit for it.
5. To cease operation of the light the stop push button is pressed. The circuit in the Starter is now open, the coil is no longer energized, and the switch returns to its normal open position.
5. To cease operation of the light the top push button is pressed. The circuit in the Starter is now open, the coil is no longer energized, and the switch returns to its normal open position.

1. The starter consists of a start push button, a stop push button, and a switch activated by the coil.

2. Pressing down the start push button closes the circuit and allows the current to flow through the coil.

3. The energized coil closes the switch, which provides an alternative closed circuit for the coil to that provided by the start push button. The start push button can now be released without breaking the current flow through the coil.

4. The light is operational, as the closed switch provides a closed circuit for it.
Ward & Sweller, 1990:

A car moving from rest reaches a speed of 20 m/s after 10 second. What is the acceleration of the car?

\[u = 0 \text{ m/s} \]
\[v = 20 \text{ m/s} \]
\[t = 10 \text{ s} \]
\[v = u + at \]
\[a = \frac{(v-u)}{t} \]
\[a = \frac{(20 - 0)}{10} \]
\[a = 2 \text{ m/s}^2 \]
A car moving from rest (u) reaches a speed of 20 m/s (v) after 10 second (t):

\[v = u + at, \quad a = (v-u)/t = (20-0)/10 = 2 \text{ m/s}^2 \].

What is the acceleration of the car?
Example of integrated condition

Then out slithered the rest of his long thin body. He twisted and turned on the slippery bottom of the bath, spitting and hissing at us.

Example of Separated condition
Then out slithered the rest of his long thin body. He twisted and turned on the slippery bottom of the bath, spitting and hissing at us.

Slithered
Twisted
Slippery
Spitting
hissing
The Integrated Format

a) Examples of the vocabulary condition:
It never thinks of roaming unless it fears that there is a drought at hand. Since it doesn’t want to be stranded, it sets out to look for a deeper pool of water.

b) Examples of the commentary condition:
It never thinks of roaming unless it fears that there is a drought at hand. Since it doesn’t want to be stranded, it sets out to look for a deeper pool of water.

c) Examples of the Combined condition:
It never thinks of roaming unless it fears that there is a drought at hand. Since it doesn’t want to be stranded, it sets out to look for a deeper pool of water.
Split attention effect: physically integrating corresponding sources of information within instruction may reduce extraneous cognitive load

Integrated instructional formats are beneficial for learning if:
• The sources of mutually referring information need to be mentally integrated in order to be understood;
• The information is characterized by high element interactivity
Multiple representations (text, pictures, video, etc.) may cause split attention.

Internet may place greater cognitive demands on students.

Reading could be more difficult in a nonlinear “hypertext” environment: several shorter text should be integrated and reconciled.
Instructional design implications:

Integrate the text into the graphic

Avoid covering or separating information that must be integrated for learning

Design space for guidance or feedback close to problem statements, both being visible
Instructional design implications:

• Integrate the text into the graphic

• Avoid covering or separating information that must be integrated for learning

• Design space for guidance for feedback close to problem statements, both being visible
Redundancy effect
1. Take Carmine Street to the intersection with 6th Avenue
2. Turn left on 6th Avenue
3. Follow the blocks along 6th Avenue
2. Turn right on W 4th Street
1. Take Carmine Street to the intersection with 6th Avenue
Redundancy effect: if a source of information (textual or graphical) is fully intelligible on its own, then any additional redundant sources of information should be removed from the instructional materials rather than integrated into it (e.g. maps, street directories, pie-charts)
Internal wiring for intermediate switching

1. The active wire goes from the active to the common of switch 1.
2. In this type of switching we use an additional switch called the intermediate switch.
3. The wire connecting switch 1 to the intermediate switch and to switch 2 are called strap wires.
4. The switch wire goes from the common of switch 2 to the light.
5. The neutral wire goes from the light to the neutral.
6. Under no circumstances is the gauge of wire used in this type of circuit to be broken.
Internal wiring for intermediate switching

The three ellipses show the cables between switches. Earths are not shown for clarity. For wire between J1 and J2 a block connector is used. But no connector is required in J1 or J2.

Two way is the same without S1 switch.

As seen the neutral does not go to switches.
Superior vena cava

Pulmonary artery

Capillaries of right lung

Aorta

Pulmonary artery

Capillaries of head and forelimbs

Pulmonary vein

Right atrium

Right ventricle

Inferior vena cava

Left atrium

Left ventricle

Aorta

Capillaries of abdominal organs and hind limbs
INSULATION RESISTANCE TESTS
CONDUCTOR IN PERMANENT WIRING

1. Disconnect appliances and
 branches during these tests

2. Make sure mains switch is "on"

3. Make sure all
 frames "on"

4. Remove mains earth
 from neutral bar

5. Connect one lead
to earth wire at
 M.E. bar

6. Connect one lead
to each wire at
 M.E. bar

7. Set meter to read insulation

8. Required
 resistance
 test is 1
 Megohm
 or more

9. Take first
 resistance
 by connecting
 both lead to
 the active
 earth

10. Take next
 resistance
 by connecting
 the lead to
 the active
 ear
INSULATION RESISTANCE TESTS
CONDUCTOR IN PERMANENT WIRING

1. Disconnect appliances and batteries during these tests.
2. Make sure main switch is "on".
3. Measure all conductors "Lx".
4. Remove main earth from neutral bar.
5. Connect one lead to each wire at M.E.N. bar.
6. Set meter to read insulation.
7. Take first measure by connecting one lead to the active.
8. Take next measure by connecting the lead to the neutral.
9. If resistance is not at least One Megohm in either of the two previous tests then measure each circuit separately.
Sweller & Chandler, 1994; Chandler & Sweller, 1996:

- Integrated manual plus hardware group
- Conventional manual plus hardware group
- Integrated manual plus hardware group

Significant differences between the groups in both written and practical skills: the hardware (e.g. computer or lab equipment) appeared to be redundant.
Studying computer packages, software manuals (word processing, spreadsheet packages, etc)

Mentally integrating information from the manual, screen, and keyboard.

Split-attention and redundancy situations?

Cognitive load theory recommendations:
• Eliminate the computer during the initial instructional period
• Replace computer with diagrammatic representations of the screen and keyboard
• Integrate segments of textual instructions at their appropriate locations in the diagrams
When instructional materials are demanding (with high intrinsic load), the **temporary elimination of the hardware** may facilitate learning and reduce instruction time.

Alternatively, elimination of the manual and **placing everything on the screen** (computer-based training) may also be effective.

However, in areas where motor components and spatial-motor coordination are essential (e.g., typing or driving a car), extensive practice with real equipment from the beginning is always important.
Reder and Anderson (1980): students could learn more from summaries of textbooks than from the full chapter.

Miller (1937): presenting children a word associated with a picture was less effective in teaching children to read than the word alone.

Lesh, Behr, and Post (1987): mathematical word problems become more difficult with additional information in the form of concrete materials.
Design implications:

Avoid redundant and irrelevant graphics, stories, and lengthy text

No split-attention and redundancy effects were demonstrated in areas of low element interactivity

Repetition is not redundancy
Distinction between the split-attention and redundancy effects:

• Integrate, if sources of information are unintelligible in isolation
• Eliminate, if sources of information are intelligible in isolation.

However, intelligibility always depends on the level of learner prior knowledge

Expertise reversal effect (to follow later)