Cara uji kuat tekan beton dengan benda uji silinder
Daftar isi

Daftar isi...i
Prakata .. ii
Pendahuluan .. iii
1 Ruang lingkup .. 1
2 Acuan normatif .. 1
3 Istilah dan definisi .. 1
4 Peralatan .. 2
4.1 Mesin penguji .. 2
4.1.1 Kalibrasi mesin tekan .. 2
4.1.2 Ketentuan peralatan .. 2
4.1.3 Ketelitian .. 3
4.2 Landasan beban .. 3
4.2.1 Landasan beban bagian bawah .. 4
4.2.2 Landasan beban bagian atas ... 4
4.3 Penunjukan beban ... 5
5 Benda uji .. 6
6 Langkah pelaksanaan ... 7
6.1 Perlakuan benda uji .. 7
6.2 Toleransi waktu pengujian ... 7
6.3 Penempatan benda uji .. 7
6.4 Rentang beban ... 7
6.5 Pembebanan .. 8
7 Perhitungan .. 8
8 Laporan ... 8
9 Ketepatan .. 9
Lampiran A (informatif) Estimasi korelasi kuat tekan silinder beton berdasarkan diameter benda uji (L/D = 2) ... 10
Lampiran B (normatif) Contoh formulir kerja .. 11
Lampiran C (informatif) Contoh isian formulir kerja ... 12
Lampiran D (informatif) Contoh perhitungan uji tekan silinder beton 13
Bibliografi ... 15
Gambar 1 Sketsa landasan tekan yang dapat berputar ... 5
Gambar 2 Sketsa gambar tipe/bentuk kehancuran pada benda uji .. 9
Tabel 1 Diameter maksimum permukaan tekan ... 4
Tabel 2 Toleransi waktu yang diizinkan .. 7
Tabel 3 Faktor koreksi rasio panjang (L) dengan diameter (D) benda uji 8
Tabel 4 Rentang koefisien variasi yang dapat diterima .. 9
Prakata

Standar ini terdiri dari penggunaan beban tekan aksial terhadap benda uji beton berbentuk silinder yang dicetak baik di laboratorium maupun di lapangan, pada laju pembebanan yang berada dalam batas yang ditentukan hingga terjadi kehancuran. Kuat tekan benda uji dihitung dengan membagi beban maksimum yang diterima selama pengujian dengan luas penampang benda uji.

Arti penetapan kuat tekan dengan standar ini harus diterjemahkan secara hati-hati karena kekuatan yang dihasilkan bukanlah perilaku yang mendasar dan sesungguhnya dari beton yang dibuat dari material tertentu. Nilai yang dihasilkan akan tergantung pada ukuran dan bentuk benda uji, penimbangan, prosedur pencampuran, metode pengambilan contoh, pencetakan dan umur, temperatur dan kondisi kelembaban selama perawatan.

Hasil pengujian ini dapat digunakan sebagai dasar untuk pengendalian mutu dari komposisi campuran beton, proses pencampuran dan kegiatan pengecoran beton; penentuan hasil pekerjaan yang memenuhi spesifikasi; dan evaluasi keefektifan bahan tambah serta pengendalian kesetaraan penggunaannya.
Cara uji kuat tekan beton dengan benda uji silinder

1 Ruang lingkup

Standar ini meliputi penetapan kuat tekan beton benda uji berbentuk silinder yang dicetak baik di laboratorium maupun di lapangan. Standar ini dibatasi untuk beton yang memiliki berat isi (unit weight) lebih besar dari 800 kg/m³.

Standar ini dapat melibatkan hal-hal yang membahayakan, baik bahan-bahannya, langkah pengoperasian dan peralatan yang digunakan. Standar ini tidak membahas masalah keselamatan yang berhubungan dengan penggunaannya. Sebelum menggunakan standar ini, pengguna bertanggung jawab untuk mempertimbangkan dan menetapkan syarat-syarat kesehatan dan keselamatan yang memadai serta menetapkan penerapan batas-batas peraturannya.

2 Acuan normatif

SNI 03-2492, Metode pengambilan benda uji beton inti.
SNI 03-2493, Metode pembuatan dan perawatan benda uji beton di laboratorium.
SNI 03-4810, Metode pembuatan dan perawatan benda uji beton di lapangan.
SNI 03-6369, Tata cara pembuatan kaping untuk benda uji silinder beton.

3 Istilah dan definisi

Istilah dan definisi yang digunakan dalam standar ini adalah sebagai berikut:

3.1 beban aksial
beban yang tegak lurus terhadap penampang/sejajar sumbu aksial yang ditinjau

3.2 beton inti
benda uji beton berbentuk silinder yang diambil dengan cara pengeboran dari struktur beton yang sudah jadi

3.3 dial gauge
arloji ukur dengan ketelitian yang digunakan untuk mengukur pergerakan (deformasi) horizontal maupun vertikal

3.4 including loads
nilai-nilai beban yang termasuk dalam rentang beban yang diinginkan

3.5 interpolasi
nilai sisip diantara nilai-nilai yang diketahui

© BSN 2011 1 dari 15
3.6 kekerasan rockwell \((HRC = \text{Hardness Rockwell C-scale}) \)
kekerosan material logam yang diukur dengan alat penguji kekerasan rockwell

3.7 pelapis permukaan (capping)
pelapis permukaan bidang tekan benda uji silinder

3.8 rasio L/D
perbandingan antara panjang benda uji silinder \((L) \) dengan diameter penampangnya \((D) \)

4 Peralatan

4.1 Mesin penguji
Mesin penguji yang digunakan harus berupa tipe yang memiliki kapasitas yang cukup dan mampu memberikan kecepatan beban seperti yang diuraikan pada 6.4.

4.1.1 Kalibrasi mesin tekan
Kalibrasi mesin tekan harus dilakukan bila terjadi salah satu dari hal berikut:
a) Paling sedikit dilakukan setiap 12 bulan;
b) Pada pemasangan awal atau relokasi mesin;
c) Segera setelah melakukan perbaikan atau penyesuaian yang dapat mempengaruhi pengoperasian sistem atau nilai yang ditunjukkan, kecuali untuk penyesuaian nol sebagai pengganti berat peralatan dan/atau benda uji;
d) Bilamana terdapat alasan yang meragukan ketepatan hasil, tanpa terikat rentang waktu sejak kalibrasi terakhir.

4.1.2 Ketentuan peralatan
Perencanaan peralatan mesin penguji harus meliputi hal-hal penting berikut:
a) Mesin harus dioperasikan dengan tenaga listrik serta harus menggunakan pembebanan yang terus menerus dan tanpa kejut. Jika mesin hanya memiliki satu kecepatan pembebanan sesuai persyaratan pada 6.4, mesin harus dilengkapi dengan alat tambahan untuk pembebanan pada kecepatan beban yang sesuai untuk keperluan verifikasi. Alat tambahan untuk pembebanan ini dapat dioperasikan dengan tenaga listrik maupun secara manual;
b) Kehancuran silinder beton dengan kuat tekan tinggi, pada umumnya memiliki daya sebar pecahan yang lebih tinggi dibandingkan dengan silinder beton dengan kuat tekan normal. Untuk keselamatan disarankan melengkapi alat uji dengan peralatan pelindung (semacam terali penutup di sekeliling benda uji);
c) Ruang yang disediakan untuk benda uji harus cukup luas memberikan tempat bagi alat kalibrasi, semacam alat kalibrasi elastis dengan kapasitas yang mencakup batasan beban yang mungkin terjadi pada mesin tekan serta sesuai dengan persyaratan. Alat kalibrasi harus ditempatkan pada posisi yang dapat dibaca. Tipe alat kalibrasi elastis yang umum tersedia dan yang umum digunakan adalah \textit{proving ring} atau sel pembebanan (\textit{load cell}).
4.1.3 Ketelitian

Ketelitian mesin penguji harus sesuai dengan persyaratan berikut:

a) Persentasi kesalahan pembebanan untuk penggunaan mesin tekan tidak boleh melampaui ± 1,0% dari beban yang ditunjukkan dalam rentang yang digunakan;

b) Ketepatan mesin harus dibuktikan dengan melakukan 5 (lima) kali pembebanan uji dalam 4 (empat) pertambahan beban yang hampir sama. Perbedaan antara 2 (dua) pembebanan uji yang berurutan tidak boleh melampaui 1/3 (satu pertiga) dari perbedaan beban uji maksimum dan minimum;

c) Beban uji yang ditunjukkan oleh mesin penguji dan beban yang diberikan (dihitung dari pembacaan alat verifikasi) harus dicatat pada tiap titik uji. Untuk menghitung kesalahan (E) dan persentasi kesalahan (Ep) untuk tiap titik data tersebut dapat digunakan persamaan sebagai berikut:

\[
E = A - B \\
Ep = 100 \left(\frac{A - B}{B} \right)
\]

Keterangan:
- \(E \) adalah kesalahan, dinyatakan dengan kN;
- \(Ep \) adalah persentasi kesalahan, dinyatakan dengan %;
- \(A \) adalah beban, kN ditunjukkan oleh mesin yang diverifikasi;
- \(B \) adalah beban yang digunakan, kN sesuai yang ditunjukkan oleh alat kalibrasi.

d) Laporan verifikasi mesin penguji harus memberikan pernyataan mengenai rentang beban berapa mesin tersebut memenuhi spesifikasi, bukan berupa laporan penerimaan atau penolakan. Rentang beban juga tidak boleh dinyatakan untuk hal-hal berikut ini:

1) Sebagai including loads yang nilainya lebih rendah dari 100 kali perubahan beban terkecil yang dapat diperkirakan pada mesin penguji atau;

2) Sebagai beban-beban yang berada dalam bagian rentang di bawah 10% dari kapasitas rentang maksimum.

e) Rentang beban tidak diperbolehkan memakai beban yang berada di luar rentang beban yang diberikan selama pengujian verifikasi;

f) Beban yang ditunjukkan mesin penguji tidak boleh dikoreksi baik dengan perhitungan atau dengan menggunakan diagram kalibrasi untuk mendapatkan nilai dalam variasi yang diizinkan sesuai dengan persyaratan.

4.2 Landasan beban

Mesin penguji harus dilengkapi dengan 2 (dua) buah landasan beban dengan permukaan keras yang terbuat dari baja, salah satunya adalah landasan dengan dudukan setengah bola yang dipergunakan untuk menekan permukaan atas benda uji dan yang lainnya berupa blok kaku tempat meletakkan benda uji. Permukaan landasan beban harus memiliki dimensi minimum 3% lebih besar dari diameter benda uji. Kecuali untuk landasan dengan permukaan lingkaran seperti yang diuraikan berikut ini; permukaan tekan tidak boleh memiliki ketidakrataan lebih dari 0,02 mm pada setiap 150 mm bagian landasan atau 0,02 mm untuk diameter landasan yang lebih kecil, selain itu untuk landasan tekan baru, landasan harus dibuat dengan ketentuan setengah dari toleransi ini. Bila diameter permukaan tekan landasan yang didudukkan secara setengah bola lebih besar 13 mm dari diameter benda uji, maka kedua permukaan tekan harus ditandai dengan lingkaran berdiameter sama dengan kedalaman tidak lebih dari 0,8 mm dan lebar tidak lebih dari 1 mm untuk mendapatkan posisi benda uji seterpusat mungkin (proper centering).
Permukaan tekan landasan yang digunakan untuk pengujian kuat tekan beton harus memiliki kekerasan Rockwell yang lebih besar atau sama dengan 55 HRC.

4.2.1 Landasan beban bagian bawah

Landasan beban bagian bawah harus sesuai dengan persyaratan berikut:

a) Landasan beban bagian bawah dipersyaratkan untuk memberikan permukaan yang siap tekan untuk memelihara kondisi permukaan sesuai dengan yang disyaratkan. Permukaan bawah dan atas harus sejajar satu sama lainnya. Permukaan mendatar terkecil sedikitnya 3% lebih besar dari benda uji. Lingkaran dengan diameter sama merupakan pilihan untuk landasan beban bagian bawah. Landasan dapat diikatkan pada mesin penguji;

b) Bila landasan beban berlapis digunakan, untuk membantu pengaturan posisi tengah (center) benda uji, posisi tengah lapisan atas harus merujuk ke landasan atas yang didudukkan setengah bola. Bila dilengkapi dengan lingkaran berdiameter sama, pusat landasan tersebut harus langsung berada di bawah pusat kepala landasan setengah bola (landasan bagian atas). Untuk menjamin posisi yang demikian, perlengkapan harus dibuat di atas bidang datar mesin;

c) Landasan tekan bagian bawah yang baru harus memiliki tebal sedikitnya 25 mm, dan harus masih memiliki tebal minimal 22,5 mm setelah pengoperasian berulang kali, kecuali bila landasan terhubung secara rapat dengan bidang datar mesin penguji bagian bawah, ketebalan dapat berkurang sampai 10 mm. Jika mesin penguji direncanakan sehingga bidang datar dapat dipilih atau setiap saat sesuai dengan kondisi permukaan yang disyaratkan, maka blok bawah tidak diperlukan.

4.2.2 Landasan beban bagian atas

Landasan tekan bagian atas harus merupakan landasan yang dapat berputar dan harus memenuhi persyaratan berikut:

a) Diameter maksimum permukaan tekan dari landasan yang dapat berputar tidak melebihi nilai pada Tabel 1;

<table>
<thead>
<tr>
<th>Diameter benda uji (mm)</th>
<th>Diameter maksimum permukaan tekan (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>105</td>
</tr>
<tr>
<td>75</td>
<td>130</td>
</tr>
<tr>
<td>100</td>
<td>165</td>
</tr>
<tr>
<td>150</td>
<td>255</td>
</tr>
<tr>
<td>200</td>
<td>280</td>
</tr>
</tbody>
</table>

b) Permukaan tekan segi empat diperbolehkan, asalkan diameter lingkaran terbesar yang mungkin ditandai tidak melebihi diameter di atas;

c) Pusat setengah bola pada landasan harus tepat dengan permukaan tekan dengan toleransi ± 5% dari jari-jari bola, diameter bagian setengah bola minimal 75% dari diameter benda uji;

d) Bagian setengah bola dan lengkungannya harus direncanakan agar bidang kontak baja tidak berubah secara permanen akibat penggunaan berulang terhadap pelemahan pada benda uji hingga 85 MPa. Permukaan kontak sebaiknya dalam bentuk setengah bola seperti ditunjukkan pada Gambar 1;
e) Permukaan lengkungan dan bagian setengah bola harus selalu bersih dan dilumasi dengan oli jenis petroleum seperti oli mobil biasa, tidak dengan gemuk (grease) tipe tekan. Setelah mengontakkan benda uji dan penggunaan beban awal yang kecil, perputaran landasan setengah bola tidak boleh lagi terjadi;

f) Jika jari-jari setengah bola (\(r\)) lebih kecil dari jari-jari benda uji terbesar (\(R\)), bagian permukaan tekan yang melebar di bawah bola harus memiliki ketebalan (\(T\)) lebih besar atau sama dengan nilai selisih antara jari-jari setengah bola (\(r\)) dan jari-jari benda uji (\(R\)). Ukuran terkecil dari permukaan tekan sedikitnya harus sebesar diameter bola (lihat Gambar 1);

g) Bagian yang bergerak dari landasan beban harus dirapatkan dengan pelapis bola, tetapi harus direncanakan sedemikian sehingga permukaan tekan dapat diputarkan secara bebas dan dimiringkan minimal 4° ke segala penjuru.

![Gambar 1 - Sketsa landasan tekan yang dapat berputar](image)

Keterangan gambar:
- \(T\) Tebal
- \(R\) Jari-jari benda uji
- \(r\) Jari-jari bola

4.3 Penunjukan beban

a) Jika beban mesin tekan yang digunakan pada pengujian beton dicatat dengan arloji ukur (dial gauge), arloji ukur harus dilengkapi dengan skala unit yang dapat dibaca sampai sedikitnya 0,1% dari beban skala penuh. Arloji ukur harus dapat dibaca sampai 1% dari beban yang ditunjukkan pada setiap beban yang diberikan dalam rentang beban. Rentang beban arloji ukur tidak diperkenankan untuk dimasukkan beban-beban yang besarnya di bawah nilai 100 kali perubahan beban terkecil yang dapat dibaca pada skala. Skala harus dilengkapi dengan garis unit yang sama dengan nol dan diberi nomor. Penunjuk arloji ukur harus memiliki panjang yang cukup untuk mencapai tanda-tanda unit, lebar ujung penunjuk tidak diperbolehkan melampaui jarak bersih antara unit terkecil. Masing-masing arloji ukur harus dilengkapi dengan pengatur nol yang dapat dicapai dengan mudah dari luar tutup arloji ukur waktu melihat tanda nol dan penunjuk arloji ukur, dan dengan alat yang sesuai setiap waktu pengaturan akan menunjukkan dalam 1% ketepatan beban maksimum yang diterima benda uji.

Angka paling rapat yang dapat dibaca paling tidak harus berjarak 0,5 mm sepanjang busur yang ditunjukkan ujung penunjuk. Selain itu, setengah interval skala harus kira-
kira sedekat yang dapat dibaca bila jarak pada mekanisme penunjuk beban antara 1 mm sampai dengan 2 mm. Bila jarak antara skala 2 mm sampai dengan 3 mm, 1/3 (satu pertiga) interval skala harus dapat dibaca dengan tingkat kepastian yang dapat diterima. Bila jarak antara skala 3 mm atau lebih, 1/4 (satu perempat) interval skala harus dapat dibaca dengan tingkat kepastian yang dapat diterima.

b) Jika beban mesin pengukur ditunjukkan dalam bentuk digital, tampilan angka-angka harus cukup besar untuk dibaca dengan mudah. Penambahan nilai angka harus sama atau kurang dari 0,1% beban skala penuh dari rentang beban yang diberikan. Rentang pembebanan yang diberikan seharusnya tidak mencakup beban yang lebih kecil dari penambahan angka-angka terkecil dikalikan dengan 100. Ketepatan beban yang ditunjukkan harus 1,0% untuk setiap nilai yang ditampilkan dalam rentang pembebanan yang diberikan. Perlengkapan harus dibuat untuk mengatur penunjukkan nol yang tepat dari beban nol, dan harus dilengkapi penunjuk beban maksimum yang setiap saat pengaturan akan menunjukkan 1,0% ketepatan sistem beban maksimum diberikan pada benda uji.

5 Benda uji

a) Benda uji tidak diperkenankan untuk diuji jika salah satu diameternya berbeda lebih dari 2% dengan diameter bagian lainnya dari benda uji yang sama.

Hal ini dapat terjadi bila cetakan sekali pakai rusak atau berubah bentuk pada saat pemindahan, pada saat cetakan sekali pakai yang bersifat fleksibel berubah bentuk ketika pencetakan atau bila pengeboran inti bergegas waktu pengeboran.

b) Tidak satupun dari benda uji tekan diperkenankan berbeda dari posisi tegak lurus terhadap sumbu lebih dari 0,5° (kira-kira sama dengan 3 mm untuk setiap 300 mm). Ujung benda uji tekan yang tidak rata sebesar 0,050 mm harus dilapis kaping, dipotong atau dipisahkan dengan SNI 03-6369-2000, atau jika ujung-ujungnya memenuhi persyaratan, lapisan neoprene dengan pengkontrol baja dapat digunakan sebagai pelapis. Diameter yang digunakan untuk perhitungan luas penampang melintang dari benda uji harus ditetapkan mendekati 0,25 mm dari rata-rata 2 (dua) diameter yang diukur tegak lurus di tengah-tengah benda uji.

c) Jumlah silinder yang diukur untuk menetapkan diameter rata-rata dapat dikurangi menjadi 1 (satu) untuk 10 (sepuluh) benda uji atau 3 (tiga) benda uji per hari, pilih mana yang lebih besar, bila benda uji diketahui dibuat dari satu kelompok cetakan yang dapat digunakan kembali atau cetakan sekali pakai yang secara konsisten menghasilkan benda uji dengan diameter rata-rata dalam rentang 0,5 mm. Bila diameter rata-rata tidak di dalam rentang 0,5 mm atau bila silinder tidak dibuat dari satu kelompok cetakan, masing-masing silinder yang diuji harus diukur dan nilai ini harus digunakan dalam perhitungan kuat tekan satuan benda uji itu. Bila diameter diukur pada frekuensi yang diukur, luas penampang melintang yang diuji pada hari tersebut harus dihitung dari rata-rata diameter 3 (tiga) silinder atau lebih yang dianggap mewakili grup yang diuji hari tersebut.

d) Panjang harus diukur sampai mendekati 0,05 D (diameter penampang benda uji) bila perbandingan panjang terhadap diameter kurang dari 1,8 atau lebih dari 2,2, atau bila isi silinder ditetapkan dari dimensi yang diukur.

e) Panjang dan diameter benda uji silinder memiliki perbandingan tertentu dimana benda uji standar memiliki rasio L/D ≥1,8 sampai dengan 2,2 dengan faktor koreksi = 1.
6 Langkah pelaksanaan

6.1 Perlakuan benda uji

Uji tekan benda uji yang dirawat lembab harus dilakukan sesegera mungkin setelah pemindahan dari tempat pelembaban. Benda uji harus dipertahankan dalam kondisi lembab dengan cara yang dipilih selama periode antara pemindahan dari tempat pelembaban dan pengujian. Benda uji harus diuji dalam kondisi lembab pada temperatur ruang.

6.2 Toleransi waktu pengujian

Semua benda uji untuk umur uji yang ditentukan harus diuji dalam toleransi waktu yang diizinkan seperti yang ditunjukkan pada Tabel 2.

<table>
<thead>
<tr>
<th>Umur uji</th>
<th>Waktu yang diizinkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 jam</td>
<td>± 15 menit atau 2,1 %</td>
</tr>
<tr>
<td>24 jam</td>
<td>± 30 menit atau 2,1 %</td>
</tr>
<tr>
<td>3 hari</td>
<td>± 2 jam atau 2,8 %</td>
</tr>
<tr>
<td>7 hari</td>
<td>± 6 jam atau 3,6 %</td>
</tr>
<tr>
<td>28 hari</td>
<td>± 20 jam atau 3,0 %</td>
</tr>
<tr>
<td>90 hari</td>
<td>± 2 hari atau 2,2 %</td>
</tr>
</tbody>
</table>

6.3 Penempatan benda uji

Letakkan landasan tekan bagian bawah, dengan permukaan kerasnya menghadap ke atas pada meja atau bidang datar mesin uji secara langsung di bawah blok setengah bola. Bersihkan permukaan landasan tekan atas, landasan tekan bawah dan permukaan benda uji kemudian letakkan benda uji pada landasan tekan bawah.

a) Lakukan verifikasi nilai nol dan dudukan landasan sebelum pengujian, pastikan penunjuk beban sudah menunjukkan nol. Dalam hal penunjuk tidak sempurna menunjukkan nol, atur penunjuk. Pada saat landasan atas yang didudukan pada setengah bola diturunkan untuk membebani benda uji, putar bagian yang dapat bergerak perlahan-lahan dengan tangan sehingga dudukan yang rata tercapai.

b) Teknik yang digunakan untuk melakukan verifikasi dan mengatur penunjuk beban nol akan beragam tergantung pada pembuat mesin. Pelajari manual atau alat kalibrasi mesin tekan untuk mendapatkan teknik yang benar.

6.4 Rentang beban

Lakukan pembebanan secara terus menerus dan tanpa kejutan:

a) Untuk mesin penguiji type ulir, kepala mesin tekan yang bergerak harus bergerak pada kecepatan mendekati 1,3 mm/menit, pada saat mesin bergerak tanpa beban. Untuk mesin yang digerakan secara hidrolis, beban harus diberikan pada kecepatan gerak yang sesuai dengan kecepatan pembebanan pada benda uji dalam rentang 0,15 Mpa/detik sampai dengan 0,35 Mpa/detik. Kecepatan gerak yang ditentukan harus djaga minimal selama setengah pembebanan terakhir dari fase pembebanan yang diharapkan dari siklus pengujian;

b) Selama periode ½ (setengah) pertama dari 1 (satu) fase pembebanan yang diharapkan, pembebanan yang lebih cepat diperbolehkan;

c) Jangan membuat perubahan pada kecepatan gerak dari dasar mendatar kapanpun saat benda uji kehilangan kekakuan secara cepat sesaat sebelum hancur.
6.5 Pembebanan

Lakukan pembebanan hingga benda uji hancur, dan catat beban maksimum yang diterima benda uji selama pembebanan. Catat tipe kehancuran dan kondisi visual benda uji beton.

7 Perhitungan

Hitung kuat tekan benda uji dengan membagi beban maksimum yang diterima oleh benda uji selama pengujian dengan luas penampang melintang rata yang ditentukan sebagai mana yang diuraikan pada Pasal 5 dan nyatakan hasilnya dengan dibulatkan ke 1 (satu) desimal dengan satuan 0,1 MPa.

\[
\text{Kuat tekan beton} = \frac{P}{A} \quad \text{(3)}
\]

dengan pengertian:

Kuat tekan beton dengan benda uji silinder, dinyatakan dalam MPa atau N/mm\(^2\);
P adalah gaya tekan aksial, dinyatakan dalam Newton (N);
A adalah luas penampang melintang benda uji, dinyatakan dalam mm\(^2\).

Jika perbandingan panjang (L) terhadap diameter (D) benda uji kurang dari 1,8, koreksi hasil yang diperoleh dengan mengalikan dengan faktor koreksi yang sesuai seperti pada tabel berikut:

<table>
<thead>
<tr>
<th>L/D</th>
<th>2,00</th>
<th>1,75</th>
<th>1,50</th>
<th>1,25</th>
<th>1,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor</td>
<td>1,00</td>
<td>0,98</td>
<td>0,96</td>
<td>0,93</td>
<td>0,87</td>
</tr>
</tbody>
</table>

Koreksi faktor di atas berlaku untuk beton ringan dengan bobot isi antara 1600 kg/m\(^3\) sampai dengan 1920 kg/m\(^3\) dan untuk beton normal. Koreksi faktor ini berlaku untuk kondisi kering atau basah saat pembebanan. Nilai yang tidak terdapat pada tabel harus ditetapkan dengan interpolasi. Faktor koreksi berlaku untuk kuat tekan beton nominal 15 MPa sampai dengan 45 MPa. Untuk angka di atas 45 MPa perlu dilakukan uji perbandingan yang lebih lanjut di laboratorium.

8 Laporan

Laporan harus meliputi:

a) Nomor identifikasi;
b) Diameter (dan panjang, jika di luar rentang 1,8 D dan 2,2 D) dalam mm;
c) Luas penampang melintang, dalam mm\(^2\);
d) Beban maksimum, dalam kN;
e) Kuat tekan yang dihitung mendekati 0,1 MPa;
f) Bentuk kehancuran, jika berbeda dari kerucut biasa (lihat Gambar 2);
g) Cacat pada benda uji atau pada lapisan perata permukaan tekan;
h) Umur benda uji.

© BSN 2011 8 dari 15
SNI 1974:2011

Keterangan:
1 Bentuk kehancuran kerucut
2 Bentuk kehancuran kerucut dan belah
3 Bentuk kehancuran kerucut dan geser
4 Bentuk kehancuran geser
5 Bentuk kehancuran sejajar sumbu tegak (kolumnar).

Gambar 2 - Sketsa gambar tipe/bentuk kehancuran pada benda uji

9 Ketepatan

Ketepatan operator tunggal dari pengujian silinder yang dibuat dari contoh beton yang tercampur baik, yang dibuat di lingkungan laboratorium dan di bawah kondisi lapangan yang normal diberikan pada Tabel 4.

<table>
<thead>
<tr>
<th>Operator tunggal</th>
<th>Koefisien variasi</th>
<th>Rentang yang dapat diterima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondisi laboratorium</td>
<td>2,37%</td>
<td>6,6%</td>
</tr>
<tr>
<td>Kondisi lapangan</td>
<td>2,87%</td>
<td>8,0%</td>
</tr>
</tbody>
</table>

Nilai di atas berlaku untuk silinder beton ukuran diameter 150 mm dan panjang 300 mm dengan kuat tekan antara 15 MPa sampai dengan 55 MPa. Untuk angka di atas 55 MPa perlu dilakukan uji perbandingan lebih lanjut di laboratorium.
Lampiran A
(informatif)
Estimasi korelasi kuat tekan silinder beton berdasarkan diameter benda uji (L/D = 2)

<table>
<thead>
<tr>
<th>Diameter (D) mm</th>
<th>Tinggi (L) mm</th>
<th>Faktor koreksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td>1.09</td>
</tr>
<tr>
<td>75</td>
<td>150</td>
<td>1.06</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>1.04</td>
</tr>
<tr>
<td>125</td>
<td>250</td>
<td>1.02</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>1.00</td>
</tr>
<tr>
<td>175</td>
<td>350</td>
<td>0.98</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>0.96</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0.93</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
<td>0.91</td>
</tr>
</tbody>
</table>

* Nilai-nilai yang tercantum dalam tabel di atas berupa asumsi yang diambil dari Gambar 12.18

Compressive strength of cylinders of different sizes, A.M Neville, Properties of Concrete, 1995.
Lampiran B
(normatif)
Contoh formulir kerja

PENGUJIAN KUAT TEKAN BETON DENGAN BENDA UJI SILINDER

<table>
<thead>
<tr>
<th>No. Pengujian</th>
<th>Jenis contoh</th>
<th>Jumlah contoh</th>
<th>Terima tanggal</th>
<th>Diuji tanggal</th>
<th>Diuji oleh</th>
<th>Diperiksa oleh</th>
</tr>
</thead>
</table>

Pengujian dilaksanakan sesuai cara uji SNI 03-1974-1990.

<table>
<thead>
<tr>
<th>Nomor benda uji</th>
<th>Tanggal pembuatan</th>
<th>Tanggal pengujian</th>
<th>Umur (hari)</th>
<th>Massa benda uji (kg)</th>
<th>Dimensi</th>
<th>Luas bidang (mm²)</th>
<th>Gaya tekan (kN)</th>
<th>Kuat tekan (N/mm²)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L (mm)</td>
<td>D (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

CATATAN:

Mengetahui,
Penyelia

Teknisi Lab.

(______________________) (______________________)

NIP.
Lampiran C
(informatif)
Contoh isian formulir kerja

PENGUJIAN KUAT TEKAN BETON DENGAN BENDA UJI SILINDER

| No. Pengujian | : | Jenis contoh | : | Silinder beton | | Jumlah contoh | : | 3 buah | | | Terima tanggal | : | | | | Diuji tanggal | : | 8 Maret 2011 | | | Diuji oleh | : | Rulli R. Irawan | | | Diperiksa oleh | : | | | |

<table>
<thead>
<tr>
<th>No. benda uji</th>
<th>Tanggal pembuatan</th>
<th>Tanggal pengujian</th>
<th>Umur (hari)</th>
<th>Massa benda uji (kg)</th>
<th>L (mm)</th>
<th>D (mm)</th>
<th>Luas bidang (mm²)</th>
<th>Gaya tekan (kN)</th>
<th>Kuat tekan (N/mm²)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ABT 1 350/JMX-1</td>
<td>09/02-07</td>
<td>08/03-07</td>
<td>28</td>
<td>12,43</td>
<td>300</td>
<td>150</td>
<td>1767,5</td>
<td>450</td>
<td>25,47</td>
<td></td>
</tr>
<tr>
<td>S-ABT 1 350/JMX-1</td>
<td>09/02-07</td>
<td>08/03-07</td>
<td>28</td>
<td>12,43</td>
<td>300</td>
<td>150</td>
<td>1767,5</td>
<td>520</td>
<td>29,43</td>
<td></td>
</tr>
<tr>
<td>S-ABT 1 350/JMX-1</td>
<td>09/02-07</td>
<td>08/03-07</td>
<td>28</td>
<td>12,43</td>
<td>300</td>
<td>150</td>
<td>1767,5</td>
<td>380</td>
<td>21,51</td>
<td></td>
</tr>
</tbody>
</table>

CATATAN:
Perhitungan di atas belum termasuk perhitungan ketidakpastian pengukuran yang mungkin terjadi.

Bandung, Maret 2011

Mengetahui,
Penyelia
Teknisi Lab.

(Ir. Roestaman, MSc)
(Rulli R. Irawan, ST)

© BSN 2011
12 dari 15
Lampiran D
(informatif)
Contoh perhitungan uji tekan silinder beton

Contoh perhitungan:
Hitung kekuatan tekan beton berdasarkan rumus berikut ini:
Luas penampang benda uji = 0,25 \(\pi \times D^2 \) (mm\(^2\)):

dengan pengertian:
\[\pi = 3.1416 \]
D = diameter benda uji (mm)
Kuat tekan (N/mm\(^2\)):
\[
\text{Gaya Tekan Maksimum (N)} \div \text{Luas penampang benda uji (mm}\(^2\))
\]

Contoh 1:
Diameter benda uji \(= 150 \) mm
Panjang benda uji \(= 300 \) mm
Beban maksimum \(= 510000 \) N.
L/D \(= 2 \) (Faktor koreksi =1)
Luas penampang benda uji \(= 0,25 \times 3.1416 \times 150^2 = 17671,5 \) mm\(^2\)
Kuat tekan \(= \frac{510000 \text{ (N)}}{17671,5 \text{ (mm}\(^2\))} \approx 28,86 \text{ N/mm}\(^2\)\)

Kuat tekan beton benda uji silinder tersebut adalah 28,86 N/mm\(^2\) atau setara 28,86 MPa

Contoh 2:
Diameter benda uji \(= 150 \) mm
Panjang benda uji \(= 187,5 \) mm
Beban maksimum \(= 520000 \) N.
L/D \(= 1,25 \) (Faktor koreksi =0,93)
Luas penampang benda uji \(= 0,25 \times 3.1416 \times 150^2 = 17671,5 \) mm\(^2\)
Kuat tekan \(= \frac{520000 \text{ (N)}}{17671,5 \text{ (mm}\(^2\))} \approx 29,43 \text{ N/mm}\(^2\) \times \text{Faktor L/D} \approx 27,37 \text{ N/mm}\(^2\)\)

Kuat tekan beton benda uji silinder tersebut adalah 29,43 N/mm\(^2\) \times 0,93 = 27,37 N/mm\(^2\) atau setara 27,37 MPa

Contoh 3:
Diameter benda uji \(= 300 \) mm
Panjang benda uji \(= 600 \) mm
Beban maksimum \(= 1000 \) kN.
L/D = 2 (Faktor koreksi =1)
Diameter terhadap benda uji standar : 0,91
Luas penampang benda uji = 0,25 * 3.1416 * 300² = 70.686 mm²
Kuat tekan = \[
\frac{1.000.000 \text{ (N)}}{70.686 \text{ (mm}^2) }\]
= 14,15 N/ mm² x (Faktor koreksi diameter)
Kuat tekan beton benda uji silinder tersebut adalah 14,15 N/ mm² x 0,91 = 12,87 N/mm² atau setara 12,87 MPa

Catatan: Perhitungan di atas belum termasuk perhitungan ketidakpastian pengukuran yang mungkin terjadi.
Bibliografi