\(\alpha \mathbf{a} = \alpha (x, y, z) = (\alpha x, \alpha y, \alpha z) \). Selanjutnya dibuktikan \((\alpha x, \alpha y, \alpha z) \in S \) atau dibuktikan \(\alpha x + \alpha y + \alpha z = 0 \). Berdasarkan sifat bilangan real diperoleh hubungan:

\[
\alpha x + \alpha y + \alpha z = \alpha (x + y + z) = \alpha \cdot 0 = 0
\]

Jadi terbukti bahwa kedua operasi tersebut bersifat tertutup, sehingga tinggal membuktikan bahwa seluruh aksioma untuk ruang vektor dipenuhi.

- Aksioma 1, 2 dipenuhi, sebab untuk setiap elemen di \(S \) merupakan elemen di \(\mathbb{R}^3 \), sehingga bersifat komutatif dan asosiatif
- Aksioma 3 dipenuhi, sebab \(\mathbf{0} = (0,0,0) \in S \) yang sama dengan elemen nol di \(\mathbb{R}^3 \).
 Dengan demikian senantiasa dipenuhi \(\mathbf{a} + \mathbf{0} = \mathbf{a} \), untuk setiap vektor \(\mathbf{a} \in S \).
- Aksioma 4 dipenuhi:
 Ambil \(\mathbf{a} = (x, y, z) \in S \), maka \(-\mathbf{a} \in S \) sebab \(-(x) + (-y) + (-z) = -(x + y + z) = \mathbf{0} \).
- Aksioma 5, 6, 7, 8 dipenuhi, sebab untuk setiap elemen di \(S \) merupakan elemen di \(\mathbb{R}^3 \).

Contoh 1.1.4:

Diberikan himpunan \(P_3 = \{ a + bx + cx^2 + dx^3 | a, b, c, d \in \mathbb{R} \} \). Pada himpunan tersebut didefinisikan penjumlahan sebagai berikut:

\[
(a + bx + cx^2 + dx^3) + (a' + bx' + c'x^2 + d'x^3) = (a + a') + (b + b')x + (c + c')x^2 + (d + d')x^3
\]

dan perkalian skalar sebagai berikut:

\[
\alpha (a + bx + cx^2 + dx^3) = (\alpha a) + (\alpha b)x + (\alpha c)x^2 + (\alpha d)x^3
\]
Diktat Aljabar Linear II

Selanjutnya tinggal menunjukkan bahwa ke delapan aksioma dipenuhi:

- **Aksioma 1:**

 \[(a + bx + cx^2 + dx^3) + (a' + b'x + c'x^2 + d'x^3) = (a + a') + (b + b')x + (c + c')x^2 + (d + d')x^3\]

 \[= (a' + a) + (b' + b)x + (c' + c)x^2 + (d' + d)x^3\]

 (sifat komutatif bilangan real)

 \[= (a' + b'x + c'x^2 + d'x^3) + (a + bx + cx^2 + dx^3)\]

 (definisi penjumlahannya)

- **Aksioma 2:**

 \[(a + bx + cx^2 + dx^3) + (a' + b'x + c'x^2 + d'x^3) + (a'' + b''x + c''x^2 + d''x^3)\]

 \[= ((a + a') + (b + b')x + (c + c')x^2 + (d + d')x^3) + (a'' + b''x + c''x^2 + d''x^3)\]

 \[= ((a + a') + a'') + ((b + b') + b'')x + ((c + c') + c'')x^2 + ((d + d') + d'')x^3\]

- **Aksioma 3:**

 Bentuk \[0 = 0 + 0x + 0x^2 + 0x^3\], sehingga untuk sebarang \[a + bx + cx^2 + dx^3\]

 berlaku:

 \[(0 + 0x + 0x^2 + 0x^3) + (a + bx + cx^2 + dx^3) =\]

 \[(0 + a) + (0 + b)x + (0 + c)x^2 + (0 + d)x^3\]

 \[= a + bx + cx^2 + dx^3\]
Aksioma 4:
Untuk sebarang \(a + bx + cx^2 + dx^3 \in P_2 \), maka \((-a) + (-b)x + (-c)x^2 + (-d)x^3 \in P_3\)
sehingga:
\[
(a + bx + cx^2 + dx^3) + ((-a) + (-b)x + (-c)x^2 + (-d)x^3)
\]
\[
= (a + (-a)) + (b + (-b))x + (c + (-c))x^2 + (d + (-d))x^3
\]
\[
= 0 + 0x + 0x^2 + 0x^3 = 0
\]

Aksioma 5:
Ambil \((a + bx + cx^2 + dx^3), \ (a' + b'x + c'x^2 + d'x^3) \in P_3\), sehingga:
\[
\alpha ((a + bx + cx^2 + dx^3) + (a' + b'x + c'x^2 + d'x^3))
\]
\[
= \alpha ((a + a') + (b + b')x + (c + c')x^2 + (d + d')x^3)
\]
\[
= \alpha (a + a') + \alpha (b + b')x + \alpha (c + c')x^2 + \alpha (d + d')x^3
\]
\[
= (\alpha a + \alpha bx + \alpha cx^2 + \alpha dx^3) + (\alpha a' + \alpha bx + \alpha cx^2 + \alpha dx^3)
\]
\[
= \alpha (a + bx + cx^2 + dx^3) + \alpha (a' + b'x + c'x^2 + d'x^3)
\]

Aksioma 6:
Ambil \((a + bx + cx^2 + dx^3) \in P_3\), sehingga:
\[
(\alpha + \beta) (a + bx + cx^2 + dx^3) = (\alpha + \beta)a + (\alpha + \beta)bx + (\alpha + \beta)cx^2 + (\alpha + \beta)dx^3
\]
\[
= (\alpha a + \alpha bx + \alpha cx^2 + \alpha dx^3) + (\beta a + \beta bx + \beta cx^2 + \beta dx^3)
\]
\[
= \alpha (a + bx + cx^2 + dx^3) + \beta (a + bx + cx^2 + dx^3)
\]
Aksioma 7:

Ambil \((a + bx + cx^2 + dx^3) \in P_3\), sehingga:

\((\alpha\beta) \ (a + bx + cx^2 + dx^3) = (\alpha\beta)a + (\alpha\beta)bx + (\alpha\beta)cx^2 + (\alpha\beta)dx^3\)

\[= \alpha(\beta a) + \alpha(\beta b)x + \alpha(\beta c)x^2 + \alpha(\beta d)x^3\]

\[= \alpha((\beta a) + (\beta b)x + (\beta c)x^2 + (\beta d)x^3)\]

\[= \alpha(\beta(a + bx + cx^2 + dx^3))\]

Aksioma 8:

Ambil \((a + bx + cx^2 + dx^3) \in P_3\), sehingga:

\[1 \ (a + bx + cx^2 + dx^3) = 1 a + 1bx + 1cx^2 + 1dx^3 = (a + bx + cx^2 + dx^3)\]

Contoh 1.1.5

Himpunan semua fungsi bernilai real dengan satu peubah real, \(F = \{f | f : R \rightarrow R\}\), merupakan ruang vektor terhadap operasi:

\((f + g)(x) = f(x) + g(x)\) dan \((\alpha f)(x) = \alpha f(x)\)

Kedua operasi bersifat tertutup, sebab keduanya menghasilkan fungsi bernilai real dengan satu peubah real. Selanjutnya tinggal ditunjukkan bahwa kedelapan aksioma ruang vektor dipenuhi kedua operasi tersebut.

Aksioma 1:

Ambil sebarang \(f, g \in F\), sehingga dibuktikan bahwa \(f + g = g + f\).

\((f + g)(x) = f(x) + g(x)\) (definisi penjumlahan)
\[g(x) + f(x) \] (sifat komutatif bilangan real)

\[(g + f)(x) \] (definisi penjumlahan)

Karena \((f + g)(x) = (g + f)(x)\), untuk setiap \(x\) maka \(f + g = g + f\).

- **Aksioma 2**

 Ambil sebarang \(f, g, h \in F\), sehingga dibuktikan bahwa \((f + g) + h = f + (g + h)\).

 \[
 ((f + g) + h)(x) = (f + g)(x) + (h)(x) \\
 = (f(x) + g(x)) + h(x) \\
 = f(x) + (g(x) + h(x)) \\
 = f(x) + (g + h)(x) \\
 = (f + (g + h))(x)

 Karena \(((f + g) + h)(x) = (f + (g + h))(x)\) untuk setiap \(x\) maka

 \((f + g) + h = f + (g + h)\)

- **Aksioma 3**

 Bentuk \(\theta(x) = 0, \forall x \in R\), maka \(\theta\) adalah fungsi nol yang merupakan anggota \(F\) dan diperoleh: \((f + \theta)(x) = f(x) + \theta(x) = f(x) + 0 = f(x)\).

 Jadi terdapat fungsi nol \(\theta\) sehingga \(f + \theta = f\)

- **Aksioma 4**

 Ambil \(f \in F\), \((-f)(x) = -1f(x)\), sehingga \(-f \in F\) dan diperoleh:

 \((f + (-f))(x) = f(x) + (-f)(x) = f(x) - f(x) = 0\)