Fuzzy inference is a computer paradigm based on fuzzy set theory, fuzzy if-then-rules and fuzzy reasoning

Applications: data classification, decision analysis, expert systems, times series predictions, robotics & pattern recognition

Different names; fuzzy rule-based system, fuzzy model, fuzzy associative memory, fuzzy logic controller & fuzzy system
- **Structure**
 - Rule base \leftarrow selects the set of fuzzy rules
 - Database (or dictionary) \leftarrow defines the membership functions used in the fuzzy rules
 - A reasoning mechanism \leftarrow performs the inference procedure (derive a conclusion from facts & rules!)

- **Defuzzification**: extraction of a crisp value that best represents a fuzzy set
 - Need: it is necessary to have a crisp output in some situations where an inference system is used as a controller

Block diagram for a fuzzy inference system
Defuzzification [definition]

“It refers to the way a crisp value is extracted from a fuzzy set as a representative value”

- There are five methods of defuzzifying a fuzzy set A of a universe of discourse Z
 - Centroid of area zCOA
 - Bisector of area zBOA
 - Mean of maximum zMOM
 - Smallest of maximum zSOM
 - Largest of maximum zLOM

Centroid of area z_{COA}

\[
 z_{COA} = \frac{\int_{z} \mu_A(z)dz}{\int_{z} \mu_A(z)dz},
\]

where $\mu_A(z)$ is the aggregated output MF.

Bisector of area z_{BOA}

This operator satisfies the following:

\[
 \int_{\alpha}^{\beta} \mu_A(z)dz = \int_{z_{BOA}}^{\beta} \mu_A(z)dz,
\]

where $\alpha = \min\{z; z \in Z\}$ & $\beta = \max\{z; z \in Z\}$. The vertical line $z = z_{BOA}$ partitions the region between $z = \alpha, z = \beta, y = 0 \& y = \mu_A(z)$ into two regions with the same area.
- **Mean of maximum** z_{MOM}

 This operator computes the average of the maximizing z at which the MF reaches a maximum μ^*. It is expressed by:

 \[
 z_{MOM} = \frac{\int_{z'} z \, dz}{\int_{z'} \, dz},
 \]

 where $z' = \{ z ; \mu_A(z) = \mu^* \}$

 By definition: if $\mu_A(z)$ has a single maximum at $z = z^*$

 then $z_{MOM} = z$

 However: if $\max_z \mu_A(z) = [z_1, z_2]$ then $z_{MOM} = \frac{z_1 + z_2}{2}$

- **Smallest of maximum** z_{SOM}

 Amongst all z that belong to $[z_1, z_2]$, the smallest is called z_{SOM}

- **Largest of maximum** z_{LOM}

 Amongst all z that belong to $[z_1, z_2]$, the largest value is called z_{LOM}
Various defuzzification schemes for obtaining a crisp output