TEKNIK PALPASI

dr Rachmah Laksmi Ambardini
FIK Universitas Negeri Yogyakarta
Email: rachmah_la@uny.ac.id

How to palpate?
- Move slowly
- Use appropriate pressure

Palpasi Deltoid

Palpasi otot
- Know the attachments of the target muscle
- Know the actions of the target muscle
- Choose the best action of the target muscle to make it contract
- Look before you palpate
- First find the target muscle in the easiest place possible
- Strum perpendicularly across the target muscle
Figure 1.8: A transverse view shows the presence of the biceps brachii muscle. The muscle is located at the anterior aspect of the arm, running from the shoulder to the elbow. The biceps brachii is a strong muscle that plays a crucial role in flexing the elbow and rotating the forearm.

Figure 1.9: The brachioradialis muscle is visible in this lateral view of the arm. The muscle runs from the elbow to the shoulder, and its function includes flexing the elbow and supinating the forearm.

Figure 1.10: The posterior deltoid muscle is shown in this view. The muscle's function is to extend and abduct the arm, and it is a key muscle in shoulder movement.

Figure 1.11: The median nerve is demonstrated in this deep transverse view of the upper arm. The nerve is critical for motor and sensory functions in the arm and hand.

Figure 2.1: The pronator teres muscle is outlined in this close-up view of the forearm. This muscle is responsible for pronating the forearm, rotating it from an extended to a flexed position.

Figure 2.2: The supinator muscle is visible in this image. It plays a role in supinating the forearm, moving it from a pronated to an supinated position.

Figure 2.3: Glucocorticoid synthesis occurs primarily in the adrenocortical cells of the adrenal gland. These cells synthesize glucocorticoids, which regulate metabolism, immune function, and blood pressure.

Figure 2.4: The internal oblique muscle is shown in this view. It is one of the muscles of the anterior abdominal wall, and its function includes flexing the trunk and turning the body towards the side.

Figure 2.5: The transversus abdominis muscle is demonstrated in this view. This muscle is involved in the control of intra-abdominal pressure and is active during static postures and during locomotion.

Figure 2.6: The levator scapulae muscle is shown in this view. It is a muscle of the neck and shoulder region that is involved in the stabilization of the scapula and shoulder joint.

Figure 2.7: The pectoralis major muscle is highlighted in this view. It is a large muscle that plays a critical role in shoulder movement, specifically in abduction and adduction.

Figure 2.8: The serratus anterior muscle is shown in this view. This muscle is involved in the movement of the scapula and is critical for shoulder abduction and lateral flexion.

Figure 2.9: The trapezius muscle is demonstrated in this view. It is a muscle that spans the posterior neck, shoulder, and upper back, and its function includes flexing the neck and elevating the scapula.

Figure 2.10: The diaphragm is shown in this view. It is a muscle that separates the thoracic cavity from the abdominal cavity and is vital for respiratory function.
Figure 7-8: Supraspinous fossa: To palpate the supraspinous fossa of the scapula, locate the spine of the scapula and drop just off it superiorly. Palpate along the superior border of the spine of the scapula within the supraspinous fossa.

PLEASE NOTE: The supraspinatus muscle attaches to the supraspinous fossa.

Figure 7-9: Supraspinous fossa: To palpate the supraspinous fossa of the scapula, locate the spine of the scapula and drop just off it superiorly. Palpate along the superior border of the spine of the scapula within the supraspinous fossa.

PLEASE NOTE: The supraspinous fossa is covered by the upper trapezius and the supraspinatus muscles. The supraspinatus muscle attaches to the supraspinous fossa.

Figure 7-10: Supraspinous fossa of the scapula: To palpate the infraspinous fossa of the scapula, locate the spine of the scapula and drop just off it inferiorly. The infraspinous fossa is larger than the supraspinous fossa.

PLEASE NOTE: The infraspinatus muscle attaches to the infraspinous fossa.

Figure 7-11: Mental border of the scapula (at the root of the spine of the scapula) Continue palpating along the spine of the scapula until you reach the medial border of the scapula. Where the spine of the scapula meets the medial border is called the root of the spine of the scapula. It is helpful to have the client seated and extend the scapula with the scapulocostal muscles to bring your hand the medial border of the scapula. Passive re-boosting the client’s scapula makes it much easier to locate the medial border.

PLEASE NOTE: The lower scapulae and rhomboid muscles attach to the medial border of the scapula on the posterior side. The serratus anterior muscle attaches to the medial border on the anterior side.
Figure 7.12 Superior angle of the scapula: Once the medial border of the scapula has been located, palpate along it superiorly until you reach the superior angle of the scapula. It can be helpful to have the client elevate and depress the scapula as you palpate for its superior angle.

PLEASE NOTE: The levator scapulae muscle attaches to the superior angle of the scapula.

Figure 10.1 Posterior view of the posterior cervical spine region. The left side is superfiial. The right side is deep. The erector spinae, spinalis, semispinalis, and iliocostalis muscles have been removed.

Figure 10.2 Observation of the right thoracic spine. A biopsy specimen of the lower trapezius. A biopsy specimen of the upper trapezius. A biopsy specimen of the upper rhomboid. A biopsy specimen of the lower rhomboid. A biopsy specimen of the upper trapezius. A biopsy specimen of the lower trapezius. A biopsy specimen of the rhomboid. A biopsy specimen of the rhomboid.