NUMBER THEORY

Ariyadi Wijaya
GCD

• Theorem:
 “If \((a,b) = d\), then there are integer numbers so that \(ax + by = d\)”

• Proof:
 By using the Division Algorithm
GCD

• Theorem:
 “If $d \mid ab$ and $(d,a)=1$ then $d \mid b$

• Proof:
 Since $(d,a)=1$ then there are x and y so that $dx+ay=1$

 $b(dx)+b(ay)=b \Rightarrow d(bx)+y(ab)=b$

 Since $d \mid ab$ so $d \mid y(ab)$ and since $d \mid d(bx)$, so $d \mid b$
• Theorem:
If $c|a$ and $c|b$ with $(a,b)=d$, then $c|d$

• Proof:
$(a,b)=d \Rightarrow d=ax+by$

Since $c|a$ so $c|ax$ \hspace{1cm} ...(i)

Since $c|b$ then $c|by$ \hspace{1cm} ...(ii)

From (i) and (ii):

$c|ax+by \Rightarrow c|d$
Least Common Multiple (LCM)

• Definition:
 For non zero integers $a_1, a_2, a_3, \ldots, a_n$ it is said that they have common multiple b if $a_i \mid b$ for $i=1,2,3, \ldots, n$

• Definition:
 For non zero integers $a_1, a_2, a_3, \ldots, a_n$, their LCM is the least number among the common multiples.
 If k is the LCM of a and b, it can be written as $[a,b]=k$
LCM

• Theorem:
 If m is a common multiple of a and b, so \([a,b] \mid m\)

• Proof:
 If \([a,b]=k\) so it will be proved that \(k \mid m\)
 Assume that \(k \mid m\), so there are q and r so that \(m=kq + r\) for \(0 < r < k\) … (i)
 Since m is a CM of a and b so \(a \mid m\) and \(b \mid m\) … (ii)
 k is the LCM of a and b so \(a \mid k\) and \(b \mid k\) … (iii)
 From (i), (ii) and (iii), \(a \mid r\) and \(b \mid r\), it is contrary to \(0 < r < k\) (namely k is the LCM).
 :: \(k \mid m\)
LCM

• Theorem:
 If \(m > 0 \), then \([ma,mb]=m[a,b]\)

• Theorem:
 If \(a \) and \(b \) are positive integers, then
 \(a,b=ab\)
Exercise:

1. Prove that “if \(a \mid b \) and \(a > 0 \) then \((a,b) = a \)”
2. Prove that \(((a,b),b) = (a,b) \)
3. Prove that \((a,b) \mid (a+b,a) \)
4. Is \((a,b) \mid [a,b] \) a correct statement? Explain
5. Prove that \([a,b] = (a,b) \) iff \(a = b \)