PENGUNAAN
ALAT-ALAT UKUR
METROLOGI INDUSTRI

Wagiran
PENGUNAAN
ALAT-ALAT UKUR
METROLOGI INDUSTRI

Buku ini hadir sebagai salah satu panduan dalam melakukan praktikum pengukuran (metrologi) dasar. Belum banyak buku yang dapat ditemui sebagai referensi bagi siswa, mahasiswa, guru, maupun praktisi bidang teknik mesin dalam hal pengukuran. Aplikasi konstruktivistik model self assessment dalam desain buku ini diharapkan mampu menumbuhkan kemandirian, kerja keras dan percaya diri dalam diri peserta didik.

Secara garis besar buku ini berisi:

- Kalibrasi dan Pemakaian Jangka Sorong
- Kalibrasi dan Pemakaian Mikrometer
- Kalibrasi Jam Ukur (Dial Indicator)
- Pengukuran Kerusakan Poros
- Pengukuran Sudut dengan Batang Sinus (Sine Bar)
- Pengukuran Benda Kerja dengan Profil Projector
- Pengukuran Sudut dengan Senter Sinus (Sine Center)
- Pengukuran Radius dengan Rol dan Bola Baja
- Pengukuran Tirus dalam dan Tirus luar
- Pengukuran Roda Gigi Lerus
- Pengukuran Ulir
- Mengukur Kemiringan dengan Angel Dekor
- Pengukuran Sudut
- Pengukuran Kekasaran Permukaan


Penerbit Deepublish [CV MUDI UTAMA]
Jl. Kaliurang km 0,4, Yogyakarta, Sleman
Telp/Fax: 0274-6492182
Email: deepublish@gmail.com
Katalog Dalam Terbitan (KDT)

WAGIRAN
Penggunaan Alat-alat Ukur Metrologi Industri /oleh Wagiran.--Ed.1, Cet. 1--
viii, 114 hlm.; 25 cm


1. Metrologi

Dr. Wagiran
PENGUNGAN ALAT-ALAT UKUR METROLOGI INDUSTRI

Desain cover oleh Gustaprsaja Galih jatisantos
Penata letak oleh Suryadi Pradana Dewanto

PENERBIT DEEPUBLISH
(Grup Penerbitan CV BUDI UTAMA)
Anggota IKAPI (876/DIY/2012)

Isi dihar tanggungjawab percetakan
Hak cipta dilindungi undang-undang
Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau sekaruh isi buku ini tanpa izin tertulis dari Penerbit.
KATA PENGANTAR

Puji syukur kehadirat Allah Swt, atas rahmat dan hidayah-Nya sehingga buku ini dapat terselesaikan. Buku ini hadir untuk mengisi ruang kosong dalam pembelajaran Metrologi Industri terutama sebagai salah satu panduan dalam melakukan praktikum metrologi dasar. Belum banyak buku yang dapat ditentui sebagai referensi bagi siswa, mahasiswa, guru maupun praktisi bidang teknik mesin dalam hal pengukuran. Aplikasi konstruktivistik model *self assessment* dalam buku ini diharapkan mampu menumbuhkan kemandirian, kerja keras, dan percaya diri dalam diri siswa atau mahasiswa. Melalui buku ini diharapkan pula peran guru/dosen sebagai fasilitator pembelajaran dapat dievaluasi sehingga mampu memberi kontribusi positif dalam usaha menghasilkan lulusan yang kompeten, profesional dan berkarakter.

Buku ini tidak dapat terselesaikan tanpa bantuan berbagai pihak. Ucapan terimakasih disampaikan kepada tim pengajar dan staf Laboratorium Metrologi Jurusan Pendidikan Teknik Mesin, Fakultas Teknik, Universitas Negeri Yogyakarta yang telah memberikan kesempatan kepada penulis untuk mengkompilasi dan menyempurnakan *job sheet* praktikum menjadi buku ini. Pengalaman mengampu mata kuliah metode yang sering dicoba, memberikan inspirasi luar biasa bagi terwujudnya buku ini, oleh karenanya ucapan terimakasih patut disampaikan kepada para mahasiswa yang telah memberikan pengalaman yang sangat berharga bagi penulis.

Akhirnya semoga buku ini dapat memberikan manfaat bagi para pembaca dalam upaya meningkatkan kualitas diri khususnya dalam hal pengukuran bidang teknik mesin. Tak lupa ucapan terimakasih dihadukan kepada penerbit Deepublish yang bersedia menerbitkan buku ini.

Yogyakarta, April 2013

Wagiran
maswagiran@yahoo.com
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>vii</td>
</tr>
<tr>
<td>KALIBRASI DAN PEMAKAIAN JANGKA SORONG</td>
<td>1</td>
</tr>
<tr>
<td>KALIBRASI DAN PEMAKAIAN MIKROMETER</td>
<td>11</td>
</tr>
<tr>
<td>KALIBRASI JAM UKUR [DIAL INDICATOR]</td>
<td>25</td>
</tr>
<tr>
<td>PENGUKURAN KELURUSAN POROS</td>
<td>31</td>
</tr>
<tr>
<td>PENGUKURAN SUDUT DENGAN BATANG SINUS (SINE BAR)</td>
<td>37</td>
</tr>
<tr>
<td>PENGUKURAN BENDA KERJA DENGAN PROFIL PROJEKTOR</td>
<td>43</td>
</tr>
<tr>
<td>PENGUKURAN SUDUT DENGAN SENTER SINUS (SINE CENTRE)</td>
<td>49</td>
</tr>
<tr>
<td>PENGUKURAN RADIUS DENGAN ROL DAN BOLA BAJA</td>
<td>57</td>
</tr>
<tr>
<td>PENGUKURAN TIRUS DALAM DAN LUAR</td>
<td>65</td>
</tr>
<tr>
<td>PENGUKURAN RODA GIGI LURUS</td>
<td>73</td>
</tr>
<tr>
<td>PENGUKURAN ULIR</td>
<td>81</td>
</tr>
<tr>
<td>MENGUKUR KEMIRINGAN DENGAN ANGLE DEKOR</td>
<td>91</td>
</tr>
<tr>
<td>PENGUKURAN SUDUT</td>
<td>99</td>
</tr>
<tr>
<td>PENGUKURAN KEKASARAN PERMUKAAN</td>
<td>107</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>113</td>
</tr>
<tr>
<td>TENTANG PENULIS</td>
<td>114</td>
</tr>
</tbody>
</table>
PRAKTIKUM 1
KALIBRASI DAN PEMAKAIAN
JANGKA SORONG

A. KOMPETENSI DASAR
Mengkalibrasi, menggunakan dan membaca hasil pengkuran jangka sorong dengan prosedur yang benar.

B. SUB KOMPETENSI DASAR
1. Mengkalibrasi jangka sorong dengan alat dan prosedur yang benar
2. Menggunakan jangka sorong untuk melakukan pengukuran dengan cara yang benar
3. Membaca hasil pengukuran jangka sorong dengan benar

C. DASAR TEORI

Skala ukur jangka sorong terdapat dalam sistem inchi dan ada pula sistem metrik. Biasanya pada masing-masing sisi dari batang ukur dicantumkan dua macam skala, satu sisi dalam bentuk inchi dan sisi lain dalam bentuk metrik. Dengan demikian dari satu alat ukur bisa digunakan untuk mengukur dengan dua sistem satuan sekaligus yaitu inchi dan metrik. Ketelitian jangka sorong bisa mencapai 0.001 inchi atau 0.05 milimeter. Untuk skala pembacaan dengan sistem metrik, terdapat jangka sorong dengan panjang skala utama 150 mm, 200 mm, 250 mm, 300 mm, dan bahkan ada juga yang 1000 mm. Secara umum konstruksi dari jangka sorong dapat digambarkan seperti gambar 1.1 berikut ini.
Ada pula jangka sorong yang tidak dilengkapi dengan skala nonius. Sebagai penggantinya maka dibuat jam ukur yang dipasangkan sedemikian rupa sehingga besarnya pengukuran dapat dilihat pada jam ukur tersebut. Angka yang ditunjukkan oleh jam ukur adalah angka penambah dari skala utama (angka di belakang koma yang menunjukkan tingkat ketelitian). Pada jam ukur biasanya sudah dicantumkan tingkat kecermatannya. Ada yang tingkat kecermatannya 0.10 mm, 0.05 mm dan ada pula yang sampai 0.02 milimeter. Sedangkan untuk pembacaan dalam inchi, tingkat kecermatannya ada yang 0.10 inchi dan ada yang 0.001 inchi. Untuk yang tingkat kecermatan 0.10 mm, satu putaran jarum penunjuk dibagi dalam 100 bagian yang sama. Ini berarti, untuk satu putaran jarum penunjuk rahang jalan akan bergerak 100 x 0.10 mm = 10 mm. Terdapat pulajangka sorong dengan skala digital.

Konstruksi dari jangka sorong dengan jam ukur dan digital dapat dilihat pada Gambar 1.2. Untuk pembacaan dalam skala metrik maupun skala inchi konstruksinya pada umumnya sama.

Gambar 1.1. Bagian umum dari mistar ingsut dengan skala nonius.

Agar pemakaian jangka sorong berjalan baik dan tidak menimbulkan kemungkinan-kemungkinan yang dapat menyebabkan kerusakan, ada beberapa hal yang harus diperhatikan, yaitu:

1. Gerakan rahang ukur gerak (jalan) harus dapat meluncur dengan kelicinan (gesekan) tertentu sesuai dengan standar yang diijinkan dan jalannya rahang ukur harus tidak bergoyang.
2. Sebaiknya jangan mengukur benda ukur dengan hanya bagian ujung dari kedua rahang ukur tetapi sedapat mungkin harus masuk agak kedalam.
3. Harus dipastikan bahwa posisi nol dari skala ukur dan kesejajaran muka rahang ukur betul-betul tepat.
4. Pada waktu melakukan penekanan kedua rahang ukur pada benda ukur harus diperhatikan gaya penekannya. Terlalu kuat menekan kedua rahang ukur akan menyebabkan kebengkokan atau ketidaksejajaran rahang ukur. Disamping itu, bila benda ukur mudah berubah bentuk maka terlalu kuat menekan rahang ukur dapat menimbulkan penyimpangan hasil pengukuran.
5. Sebaiknya jangan membaca skala ukur pada waktu jangka sorong masih berada pada benda ukur. Kunci dulu peluncurnya lalu dilepas dari benda ukur kemudian baru dibaca skala ukurnya dengan posisi pembacaan yang betul.
6. Jangan lupa, setelah jangka sorong tidak digunakan lagi dan akan disimpan ditempatnya, kebersihan jangka sorong harus diperhatikan dengan cara membersihkannya memakai alat-alat pembersih yang telah disediakan misalnya kertas tissue, vaselin, dan sebagainya.

D. ALAT DAN PERLENGKAPAN

1. Jangka sorong
2. Blok ukur (gauge block)
3. Meja rata
4. Alat-alat pembersih
5. Benda kerja.

E. KESELAMATAN KERJA

1. Jangka sorong dan benda ukur harus selalu dalam keadaan bersih
2. Tempatkan jangka sorong pada tempat yang aman sehingga tidak mudah jatuh atau tertimpa benda yang lain
3. Jangan hanya menggunakan ujung rahang bila melakukan pengukuran
F. LANGKAH KERJA

1. Langkah Kalibrasi
   a. Periksa kelurusan bidang ukur kiri. (L).
   b. Periksa kelurusan bidang ukur kanan. (R).
   c. Periksa kelurusan pembacaan nol.
   d. Lanjutkan dengan mengukur menggunakan blok ukur seperti pada tabel.
   e. Catat setiap penyimpangan yang terjadi ke dalam tabel.

2. Langkah Pengukuran.
   a. Mempersiapkan alat ukur dan benda kerja.
   b. Ukur bagian–bagian benda kerja pada lokasi yang telah di tentukan dalam gambar.
   c. Catatlah setiap hasil pengukuran kedalam tabel.
   d. Sebelum dan sesudah praktek alat–alat ukur dan benda kerja serta perlengkapannya harus dijaga tetap bersih.
G. DATA PENGUKURAN

1. Data Kalibrasi Jangka Sorong

![Diagram of a vernier caliper](image)

<table>
<thead>
<tr>
<th>No</th>
<th>Kelurusan Rahang kiri (L)</th>
<th>Lurus / tidak lurus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kelurusan Rahang Kanan (R)</td>
<td>Lurus / tidak lurus</td>
</tr>
<tr>
<td></td>
<td>Pembacaan nol</td>
<td>Tepat / tidak tepat</td>
</tr>
<tr>
<td></td>
<td>Kecermatan</td>
<td>.....................</td>
</tr>
<tr>
<td></td>
<td>Standar (mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merek/Type/Seri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pengamatan I</td>
<td>Pengamatan II</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
2. Data Pengukuran Menggunakan Jangka Sorong

<table>
<thead>
<tr>
<th>No</th>
<th>Lokasi</th>
<th>Pengamatan</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suhu ruang : ..................  Mengetahui
Kelembaban : ..................  Instruktur/Laboran
Tgl Praktikum : ..................
H. ANALISIS DATA HASIL PENGUKURAN
I. KESIMPULAN DAN SARAN

<table>
<thead>
<tr>
<th>Diperiksa</th>
<th>Catatan:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanggal:</td>
<td></td>
</tr>
<tr>
<td>Oleh :</td>
<td></td>
</tr>
<tr>
<td>Tandatangan:</td>
<td></td>
</tr>
</tbody>
</table>

NILAI: