Valid and Invalid Arguments

An argument is a sequence of statements such that
• all statements but the last are called *hypotheses*
• the final statement is called the *conclusion.*
• the symbol \(\therefore \) read “therefore” is usually placed just before the conclusion.

Example:

\[
\begin{align*}
p \land \sim q & \rightarrow r \\
p \lor q \\
q & \rightarrow p \\
\therefore & \quad r
\end{align*}
\]

An argument is said to be *valid* if - whenever all hypotheses are true, the conclusion must be true.
Example of a valid argument (form)

\[p \land (q \lor r) \]
\[\sim q \]
\[\therefore p \land r \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>(p \land (q \lor r))</th>
<th>(\sim q)</th>
<th>(p \land r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

11/26/2013
Nur Insani (nurinsani@uny.ac.id)
An invalid argument

\[p \rightarrow q \lor \sim r \]
\[q \rightarrow p \lor r \]
\[\therefore p \rightarrow r \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>p \rightarrow q \lor \sim r</th>
<th>q \rightarrow p \lor r</th>
<th>p \rightarrow r</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Invalid row

11/26/2013 Nur Insani (nurinsani@uny.ac.id)
Tautology
- is a statement (form) that is always true regardless of the truth values of the individual statement variables.

Examples:
• $p \lor \sim p$ (eg. the number n is either > 0 or ≤ 0)
• $p \land q \rightarrow p$
• $(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow r)$

We need to study tautologies because any valid argument is equivalent to a tautology. In particular, every theorem we have proved is a tautology.
Example:

\[p \land (q \lor r) \]
\[\sim q \]
\[\therefore p \land r \]

is a valid argument,

In other words, an argument

\[H_1 \]
\[H_2 \]
[...]
\[H_n \]
\[\therefore \text{Conclusion} \]

is valid if and only if

\[H_1 \land H_2 \land \ldots \land H_n \rightarrow \text{conclusion} \]

is a tautology.

\[[p \land (q \lor r)] \land [\sim q] \rightarrow [p \land r] \]

is a tautology.
Two most important valid argument forms

Modus Ponens: means method of affirming

\[p \rightarrow q \]
\[p \]
\[\therefore q \]

Example: If \(n \geq 5 \), then \(n! \) is divisible by 10.

\[n = 7 \]
\[\therefore 7! \text{ is divisible by } 10. \]

Modus Tollens: means method of denying

\[p \rightarrow q \]
\[\sim q \]
\[\therefore \sim p \]

Example: If \(n \) is odd, then \(n^2 \) is odd.

\[n^2 \text{ is even.} \]
\[\therefore n \text{ is even.} \]
More valid forms

Conjunctive simplification:

\[p \land q \]

\[\Rightarrow p \]

Example: The function \(f \) is 1-to-1 and continuous.

\[\Rightarrow \text{The function } f \text{ is 1-to-1.} \]

Disjunctive addition:

\[p \]

\[\Rightarrow p \lor q \]

Example: The function \(f \) is increasing.

\[\Rightarrow \text{The function } f \text{ is increasing or differentiable.} \]
More valid forms

Conjunctive addition:
\[p \land q \]
\[\therefore p \lor q \]

Example:
\[n \text{ is an integer, } n \text{ is positive.} \]
\[\therefore n \text{ is a positive integer.} \]

Disjunctive syllogism:
\[p \lor q \]
\[\therefore p \land q \]

Example:
The graph of this equation may be a circle or an ellipse.

The graph of this equation cannot be a circle.

\[\therefore \text{The graph must be an (true) ellipse.} \]
Hypothetical syllogism:
	\[p \supset q \]
	\[q \supset r \]
\[\therefore p \supset r \]

Proof by cases:
	\[p \lor q \]
	\[p \supset r \]
	\[q \supset r \]
\[\therefore r \]

Rule of contradiction:

Example:

\[n \] is either odd or even.
If \(n \) is odd, then \(n(n-1) \) is even.
If \(n \) is even, then \(n(n-1) \) is even.
Therefore \(n(n-1) \) is always even.

Example:

If \(\sqrt{2} \) is not irrational, then there exists whole numbers \(a, b \) that are relatively prime and are both even.

Therefore \(\sqrt{2} \) must be irrational.
A valid argument with a false conclusion.

The following argument is valid by modus ponens, but since its hypothesis is false, so is its conclusion.

If p is prime, then $2^p - 1$ is also prime (False).
11 is prime (True).
Therefore $2^{11} - 1$ is prime (False).

Actually, $2^{11} - 1 = 2047 = 23 \times 89$ is not prime.

Note: Any prime of the form $2^p - 1$ is called a Mersenne prime, the largest one up to date is $2^{6972593} - 1$ (discovered on 6-1-99)