Introduction to Number Theory

Part C.
- Linear Diophantine Equation
- Arithmetic Functions

Nikenasih B, M.Si
Mathematics Educational Department
Faculty of Mathematics and Natural Science
State University of Yogyakarta
Contents all part

- Preliminary
- Divisibility
- Congruence
- Unique Factorisation
- Linear Diophantine Equation
- Arithmetic Functions
Linear Diophantine Equation (LDE)

- It's given equation of variables x_1, x_2, \cdots, x_k as follows:
 \[f(x_1, x_2, \cdots, x_k) = 0 \]

- Problem of finding the integer solution(s) of equation above is named Diophantine problem and the equation is named Diophantine equation.

- Suppose x and y are variables of integers. The simplest form of Diophantine equation is
 \[ax + by = c \]

Where a and b are positive integers.
• Now, we would like to find the general integers solution of the simplest form of Diophantine Equation above if it exists.

• At first, it is defined that two integers is called relative prime if the greatest common divisor of a and b is 1.
If a and b are relative prime, then there exist x_1 and y_1 integers such that

$$ax_1 + by_1 = 1$$

Proof:
Without loss of Generalization, suppose $b > 0$. Consider the sequence as follows:

$$a \cdot 1, a \cdot 2, a \cdot 3, \ldots, a \cdot b, a \cdot (b + 1), \ldots$$

Because a and b are relative prime, then if we divide all numbers by b, for the first $b-1$ numbers, the remainders are $\{1, 2, 3, \ldots, b-1\}$ and there are no two or more numbers have similar remainder. From this point, there exist $x_1 \in \{1, 2, 3, \ldots, b-1\}$ such that the remainder of ax_1 if it is divided by b is 1. This is implied that there exist an integer y^* such that

$$ax_1 = by^* + 1$$

Take $y_1 = -y^*$, then it follows that there exist x and y integers such that

$$ax_1 + by_1 = 1.$$
The greatest common divisor of two positive integers a and b can be stated as linear combination of a_1 and b, that is there exist integers x_2 and y_2 such that

$$GCD(a, b) = ax_2 + by_2.$$ \hspace{1cm} (1.2)

Proof:
Suppose that $GCD(a, b) = d$. It is implied that a and b is divisible by d or there exist integers a_1 and b_1 such that $a = da_1$ and $b = db_1$. Because d is the greatest common divisor then a_1 and b_1 are relative prime. By using Theorem II.2, then there exist integer x_2 and y_2 such that

$$a_1x_2 + b_1y_2 = 1$$

Multiply both side with d, we get

$$da_1x_2 + db_1y_2 = d \text{ or } ax_2 + by_2 = d = GCD(a, b).$$

Proof complete.
LDE – Theorem 3

If a and b are two positive integers and d_1 is divisible by $GCD(a, b)$ then there exist integers x_3 and y_3 such that

$$ax_3 + by_3 = d_1$$

Proof:
Suppose that $GCD(a, b) = d$. As given that d_1 is divisible by $GCD(a, b)$ which means that there exist s such that $d_1 = ds$. From the Theorem II.3, there exist integer x_2 and y_2 such that

$$ax_2 + by_2 = d$$

Multiply both side with s then we get

$$asx_2 + bsy_2 = ds$$

Suppose $x_3 = sx_2$ and $y_3 = sy_2$, then

$$ax_3 + by_3 = d_1.$$

Proof complete.
From The Theorems above, we can conclude that there exist integers solution for \(ax + by = d_1 \), if \(d_1 \) is divisible by \(\text{GCD}(a,b) \). Suppose \((x_0, y_0)\) is one solution for the simplest linear diophantine equation above, then
\[
ax_0 + by_0 = d_1
\]

Now, we would like to find the general formula for its solution if its given specific solution of simplest linear diophantine equation \((x_0, y_0)\). Suppose
\[
x = x_0 + p, y = y_0 + q
\]

Substitute to the equation, we get
\[
a(x_0 + p) + b(y_0 + q) = d_1
\]

Because \((x_0, y_0)\) is one solution, then
\[
wp + bq = 0
\]
\[
p = -\frac{bq}{a}
\]
Suppose \(d = \text{GCD}(a,b) \), then there exist integers \(a_1 \) and \(b_1 \) such that \(a = da_1 \) and \(b = db_1 \). In other words, \(a_1 \) and \(b_1 \) are relative prime. Here, we get

\[
da_1 p + db_1 q = 0
\]

\[
p = -\frac{b_1 q}{a_1}
\]

Because \(a_1 \) and \(b_1 \) are relative prime and \(p \) is an integer, then \(q \) must be multiple of \(a_1 \). Suppose \(k \) is any integers such that \(q = a_1 k \), then

\[
p = -\frac{b q}{a} = -\frac{b a_1 k}{d a_1} = -\frac{b k}{d}
\]

\[
\frac{-b k}{d} = -\frac{b q}{a} \rightarrow q = \frac{a}{d} k
\]
Here, we get

the general solution for the simplest linear diophantine equation \(ax + by = d_1 \) and \((x_0, y_0) \) is one solution, if \(d_1 \) is divisible by \(\text{GCD}(a,b) \), is

\[
x = x_0 + \frac{b}{\text{gcd}(a,b)} \cdot k
\]

\[
y = y_0 - \frac{a}{\text{gcd}(a,b)} \cdot k
\]
LDE - Exercises

- Find one integer solution for $17x + 83y = 5$.
- Find all positive number (x,y) which satisfy $12x + 5y = 125$.
- Exploration. Find all positive solution for $17x - 83y = 5$.
- It’s given positive integer $x > 1$ and y which satisfy equation $2007x - 21y = 1923$. Find the minimum value for $x + y$.
Arithmetic Functions

An arithmetic function \(f \) is a function whose domain is the set of positive integers and whose range is a subset of the complex numbers.

The following functions are of considerable importance in Number Theory:

- \(d(n) \) the number of positive divisors of the number \(n \).
- \(\sigma(n) \) the sum of the positive divisors of \(n \).
- \(\phi(n) \) the number of positive integers not exceeding \(n \) and relative prime to \(n \).
- \(\omega(n) \) the number of distinct prime divisors of \(n \).
- \(\Omega(n) \) the number of primes dividing \(n \), counting multiplicity.
• The symbols of above functions are

\[
d(n) = \sum_{d|n} 1, \quad \sigma(n) = \sum_{d|n} d, \quad \omega(n) = \sum_{\rho|n} 1, \quad \Omega(n) = \sum_{\rho^\alpha || n} \alpha,
\]

and

\[
\phi(n) = \sum_{1 \leq k \leq a \atop (k,n) = 1} 1.
\]

Let \(n \) have the prime factorisation \(n = \rho_1^{a_1} \rho_2^{a_2} \cdots \rho_r^{a_r} \). Then

\[
d(n) = (1 + a_1)(1 + a_2) \cdots (1 + a_r).
\]