Putty Adhesion 1
(Good/Bad Examples)
Differences Between Steel Panel Surfaces

- Base Metal
- Galvanized Layer
<table>
<thead>
<tr>
<th>Putty Type</th>
<th>Amount of Hardener</th>
<th>Effects of Drying Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Steel Panel Putty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized Steel Putty</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Strong Adhesion
- No Adhesion

Galvanized Steel Putty

9% Hardener & Dried at about 100°C
Wash Primer

Thin Coat

Strong Adhesion

Galvanized Steel Putty

No Adhesion

9% Hardener

Coat Thickness of Wash Primer

Effects due to the Ratio of Hardener
Wash Primer

Thin Coat

Strong Adhesion

Galvanized Steel Putty

Drying Temperature of 60℃

No Adhesion

Galvanized Steel Putty

Drying Temperature of 140℃

Effects of Drying Temperature
Putty Adhesion 2
(Good/Bad Examples)
Galvanized Steel Putty
Base Metal
Without Wash Primer
Normal Steel Putty
Galvanized Steel Putty
Without Wash Primer
Galvanized Steel Putty

Thin Coat

Wash Primer

Baking at 70°C

Baking at 140°C
Without Featheredging
Featheredge too narrow
Featheredge too wide
Substrate Treatment Process
(Good/Bad Examples)
Assessment of Damaged Area

Removing Paint Film

Good

Bad

Original Paint Remaining

Only as wide as necessary

Uneven Edge
Featheredging & Wash Primer

Bad

Without Primer
Thin Coat
Edge width is narrow

Good

Thin coat of primer
Widely and evenly
Putty Application

Bad
- Excess putty
- Outer edge uneven

Good
- Smooth outer edge
- Insufficient Sanding
- Sanding beyond boundary
- Sanding putty too much
- Thin Featheredge can be seen