Complex Analysis covers the topics of complex number system, complex plane, functions and limit, continuity of functions, differentiation, elementary functions of a complex variable: exponential functions, logarithm functions, trigonometry functions, hyperbolic functions; contour integration, the maxima modulus theorem, Cauchy's theorem, Cauchy's formula.

Students are expected to be able to: (1) explain the complex number system and complex plane coordinate, (2) determine the functions, limit, and continuity of functions, (3) explain the differentiation, elementary functions of a complex variable: exponential functions, logarithm functions, trigonometry functions, hyperbolic functions, (4) determine the contour integration, (5) apply the maxima modulus theorem, (6) determine the Cauchy's theorem, (7) determine Cauchy's formula.
<table>
<thead>
<tr>
<th>Group</th>
<th>Activity Description</th>
<th>Details</th>
<th>Schedule</th>
</tr>
</thead>
</table>
| | Explaining polar form, powers and roots of complex number | i) polar form
ii) powers and roots of complex number | |
| | ii) polar form
ii) powers and roots of complex number | i) Functions of complex variables
ii) Limits
iii) Continuity | B: 5-18
D: 7-9 |
| 8 | Explaining regions in the complex plane | regions in the complex plane | |
| | Group discussion and presentation. | | A: 23-27
D: 7-9 |
| 9 – 11| Explaining functions of complex variables, limits, theorems on limits, and continuity| i) Functions of complex variables
ii) Limits
iii) Continuity | A: 26-43
B: 42-45
C: 17-20
D: 44-45 |
| | Group discussion and presentation. | | |
| 12 – 15| Explaining derivatives of complex functions, differentiation formulas, Cauchy-Riemann equations and sufficient conditions for differentiability | i) derivatives of complex functions
ii) Differentiation formulas
iii) Cauchy-Riemann equations
iv) Sufficient conditions for differentiability | A: 43-52
B: 59-71
C: 31-32 |
| | Group discussion and presentation. | | |
| 16 | Exam 1 | | |
| 17 – 18| Explaining analytic functions, harmonic functions and determine a harmonic conjugate | i) Analytic functions
ii) Harmonic functions
iii) Harmonic conjugate | Questioning-answers, Classical discussion, presentation
[A]: 55-62
[B]: 42-45, 54-57 |
| | Questioning-answers, Classical discussion, presentation | | |
| 19 – 24| Explaining elementary functions | i) The exponential functions
ii) Trigonometric functions
iii) Hyperbolic functions
iv) The logarithmic functions
v) Complex exponent
vii) Inverse trigonometric functions | Questioning-answers, Classical discussion, presentation
[A]: 65-84
[B]: 19-20
[D]: 39-41 |
| | Questioning-answers, Classical discussion, presentation | | |
| 25 – 26| Determining definite integral and explaining contours integrals of complex functions | i) Definite integral
ii) Contours integrals | Questioning-answers, Classical discussion, presentation
[A]: 86-97
[B]: 70-75 |
| | Questioning-answers, Classical discussion, presentation | | |
| 27 – 28| Determining antiderivatives complex functions and determining integral by Cauchy Goursat Theorem | i) Antiderivatives
ii) The Cauchy-Goursat Theorem | Questioning-answers, Classical discussion, presentation
[A]: 104-111
[B]: 110-112
[D]: 106-107 |
29 – 30
Determining integral
by Cauchy’s formula
Explaining Morera theorem

i) The Cauchy integral formula
ii) Morera Theorem

Questioning-answers,
Classical discussion,
presentation

[A]:127-128
[B]:119-122

31
Explaining Liouville theorem

Liouville theorem

Questioning-answers,
Classical discussion,
presentation

[A]:130-132
[B]:117-118

32
Exam 2

IV. References:

V. Evaluation

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
<th>Worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Participation</td>
<td>15 %</td>
</tr>
<tr>
<td>2</td>
<td>Assignment</td>
<td>30 %</td>
</tr>
<tr>
<td>3</td>
<td>Exam 1 & 2</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Yogyakarta, Agustus 2011

Head of Mathematics Education Department
Lecturer,

Dr. Hartono
NIP. 196203291987021002

Eminugroho Ratna Sari, M.Sc
NIP. 19850414 200912 2 003