1. Functions of a Complex Variable

Let E be a set of complex numbers. A function f defined on E is a rule that assigns to each z in E a complex number w. The number w is called the value of f at z and is denoted by $f(z)$; that is, $w = f(z)$. The set E is called the domain of definition of f, written $D(f)$, $D(f) = \{ z \in \mathbb{C} : f(z) \text{ defined} \}$.

Example 1

Determine the domain definition of $f(z) = \frac{z + 1}{z^2 + z + 1}$ and $g(z) = z^2 + z + 1$

Solution:

\[
D(f) = \{ z \in \mathbb{C} : f(z) \text{ defined} \} = \{ z \in \mathbb{C} : z^2 + z + 1 \neq 0 \} = \{ z \in \mathbb{C} : z \neq -\frac{1}{2} \pm \frac{1}{2}i\sqrt{3} \} \\
D(g) = \{ z \in \mathbb{C} : g(z) \text{ defined} \} = \mathbb{C}
\]

2. Limits

Let a function f be defined at all points z in some deleted neighborhood of z_0. The statement that the limit of $f(z)$ as z approaches z_0 is a number w_0, or

\[
\lim_{z \to z_0} f(z) = w_0
\]

(2)

means that the point $w = f(z)$ can be made arbitrarily close to w_0 if we choose the point z close enough to z_0 but distinct from it. Equation (2) means that, for each positive number ε, there is a positive number δ such that

\[
|f(z) - w_0| < \varepsilon \quad \text{whenever} \quad 0 < |z - z_0| < \delta.
\]

(3)
Example 1

Show that \(\lim_{z \to i} z^2 - 1 = 2\)

Solution:

From the properties of moduli, we have

\[
\left| (z^2 - 1) - (-2) \right| = |z^2 + 1| = |z - i||z + i|.
\]

Observe that when \(\forall z \in \mathbb{C}\) is in the region \(|z - i| < 1\),

\[
|z + i| = |z - i + 2i| \leq |z - i| + |2i| < 1 + 2 = 3.
\]

Hence, for \(\forall z \in \mathbb{C}\) such that \(|z - i| < 1\),

\[
\left| (z^2 - 1) - (-2) \right| = |z^2 + 1| = |z - i||z + i| < 3|z - i|.
\]

For any positive number \(\varepsilon\), get \(\delta = \min\left\{ \frac{\varepsilon}{3}, 1 \right\}\) such that \(0 < |z - i| < \delta\),

\[
\left| (z^2 - 1) - (-2) \right| < 3|z - i| < 3 \left(\frac{\varepsilon}{3} \right) = \varepsilon.\]

Note that when a limit function \(f(z)\) exist at a point \(z_0\), it is unique.

Example 2

If \(f(z) = \frac{\overline{z}}{z}\), then \(\lim_{z \to 0} f(z)\) does not exist.

When \(z = (x, 0)\) is a nonzero point on the real axis,

\[
f(z) = \frac{x - i0}{x + i0} = 1
\]

and when \(z = (0, y)\) is a nonzero point on the imaginary axis,
Thus, by letting \(z \) approach the origin along real axis, we would find that the desired limit is 1. An approach along imaginary axis would, on the other hand, yield the limit -1. Since the limit is unique, we must conclude that \(\lim_{z \to 0} \frac{\overline{z}}{z} \) does not exist.

Since limits of the latter type are studied in calculus, we use their definition and properties freely.

Theorem 1

Suppose that

\[
f(z) = u(x, y) + iv(x, y), \quad z_0 = x_0 + iy_0, \quad \text{and} \quad w_0 = u_0 + iv_0.\]

Then

\[
\lim_{z \to z_0} f(z) = w_0 \quad (4)
\]

if and only if

\[
\lim_{(x,y) \to (u_0,v_0)} u(x,y) = u_0 \quad \text{and} \quad \lim_{(x,y) \to (u_0,v_0)} v(x,y) = v_0 \quad (5)
\]

Example

Find \(\lim_{z \to 1+i} \left(z^2 + \frac{1}{z} \right) \).

Observe that

\[
z^2 + \frac{1}{z} = (x+i) + \frac{1}{x+iy} = (x^2 - y^2) + \frac{x}{x^2 + y^2} + i \left(2xy - \frac{y}{x^2 + y^2} \right).
\]

We have \(u(x,y) = (x^2 - y^2) + \frac{x}{x^2 + y^2} \) and \(v(x,y) = 2xy - \frac{y}{x^2 + y^2} \). From Theorem 1,

\[
\lim_{(x,y) \to (1,1)} \left(\frac{x^2 - y^2}{x^2 + y^2} + \frac{x}{x^2 + y^2} \right) = \frac{1}{2} \quad \text{and} \quad \lim_{(x,y) \to (1,1)} \left(\frac{2xy - y}{x^2 + y^2} \right) = \frac{3}{2},
\]

thus

\[
\lim_{z \to 1+i} \left(z^2 + \frac{1}{z} \right) = \frac{1}{2} + \frac{3}{2}i.
\]

Theorem 2

If \(\lim_{z \to z_0} f(z), \lim_{z \to z_0} g(z) \) exist and \(c \in \mathbb{C} \), then
(1) \[\lim_{z \to z_0} (f(z) + g(z)) \text{ exist and } \lim_{z \to z_0} (f(z) + g(z)) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z) \]

(2) \[\lim_{z \to z_0} (cf(z)) \text{ exist and } \lim_{z \to z_0} (cf(z)) = c \lim_{z \to z_0} f(z) \]

(3) \[\lim_{z \to z_0} (f(z)g(z)) \text{ exist and } \lim_{z \to z_0} (f(z)g(z)) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z) \]

(4) \[\lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) \text{ exist and } \lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}, \text{ whenever } \lim_{z \to z_0} g(z) \neq 0 \]

Limits Involving the Point at Infinity

We have three points about limits that is involving the point at infinity:

\[\lim_{z \to \infty} f(z) = \infty \text{ if and only if } \lim_{z \to 0} \frac{1}{f(z)} = 0. \quad (6) \]

\[\lim_{z \to \infty} f(z) = w_0 \text{ if and only if } \lim_{z \to 0} \frac{1}{f(z)} = w_0. \quad (7) \]

\[\lim_{z \to \infty} f(z) = \infty \text{ if and only if } \lim_{z \to 0} \frac{1}{f(z)} = 0. \quad (8) \]

Example 1

Observe that \(\lim_{z \to \infty} \frac{i+3}{z+i} = \infty \) since \(\lim_{z \to \infty} \frac{z+i}{i+3} = 0. \)

Example 2

Observe that \(\lim_{z \to \infty} \frac{3z-i}{z+2} = 3 \) since \(\lim_{z \to 0} \frac{\frac{1}{z} - i}{\frac{1}{z} + 2} = \lim_{z \to 0} \frac{3-i}{1+2z} = 3. \)

Example 3

Observe that \(\lim_{z \to \infty} \frac{3z^4-i}{z^3+2} = \infty \) since \(\lim_{z \to 0} \frac{\frac{1}{z^3} + 2}{\frac{1}{z^3} - i} = \lim_{z \to 0} \frac{z + 2z^4}{3 - iz^4} = 0. \)

Exercises

1. For each of the functions below, describe the domain of definition that is understood

 (a) \(f(z) = \frac{1}{z^2 + 4} \)
 (c) \(f(z) = \cos(z^2 - i) \)
(b) \(f(z) = \frac{\overline{z} + 2i}{z + \overline{z}} \)

2. Write the function \(f(z) = z^3 + 2z - i \) in the form \(f(z) = u(x, y) + iv(x, y) \).

3. Let \(z_0, c \) denote complex constant. Use definition (3) to prove that

 (a) \(\lim_{z \to z_0} c = c \)

 (b) \(\lim_{z \to 1 + i} (x + 2iy) = 1 - 2i \)

4. Let \(f(z) = \frac{z^2}{|z|^2} \)

 a. Find \(\lim_{z \to 0} f(z) \) along the line \(y = x \)

 b. Find \(\lim_{z \to 0} f(z) \) along the line \(y = 2x \)

 c. Find \(\lim_{z \to 0} f(z) \) along the parabola \(y = x^2 \)

 d. What can you conclude about the limit of \(f(z) \) along \(z \to 0 \)

5. Using (6), (7) and (8) of limits, show that

 (a) \(\lim_{z \to \infty} \frac{z^4 - z^3 + 2z}{(z+1)^4} = 1 \)

 (b) \(\lim_{z \to 2i} \frac{z}{(z-2i)^2} = \infty \)

 (c) \(\lim_{z \to \infty} \frac{z^2 - 1}{z + 1} = \infty \)

6. Find the value of limits below

 (a) \(\lim_{z \to 1 + 2i} z^2 + 2z - 1 \)

 (b) \(\lim_{z \to 2i} z^2 + 2z - 1 \)

 (c) \(\lim_{z \to (1+i)(3i)} \frac{z^3 + 8}{z^4 + 4z^2 + 16} \)

 (d) \(\lim_{z \to \infty} \frac{z^4 - 1}{z - i} \)

 (e) \(\lim_{z \to \infty} \frac{z^2 + 4z + 2}{z + 1} \)

 (f) \(\lim_{z \to 1+i} \frac{z^2 + z - 1 - 3i}{z^2 - 2z + 2} \)