Learning Mathematics in Group Work
(A Repeated-Measures Experimental Design)

Endah Retnowati

Research Topic: Group Work
Humans, as social creatures, frequently form groups to solve problems together. School students are often allocated to groups to study in areas such as mathematics. It is assumed that studying in groups may be advantageous in terms of developing collaborative skills. But, how should we design effective instruction for learning mathematics during group work?

Cognitive Load Theory
CLT is an instructional design theory based on human cognitive architecture. Human cognitive architecture is a natural information processing system that can be summarised by five principles as follows.

Five Principles
1. The information store principle (LTM)
2. The borrowing and reorganising principle (Explicit Instruction)
3. The randomness as genesis principle (PS)
4. The narrow limits of change principle (WM)
5. The environmental organising and linking principle (LTWM)

Human cognitive architecture

<table>
<thead>
<tr>
<th>Sensory Memory</th>
<th>Working Memory</th>
<th>Long-term Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>The input/reject</td>
<td></td>
<td>The initial store</td>
</tr>
</tbody>
</table>

Worked Example
Instruction is designed to facilitate schema acquisition and automation. Based on cognitive load theory, the use of worked example has proved to be a powerful instructional procedure for novice learners in various domains by countless controlled experiments. Specifically, to facilitate learning, instruction should be designed to minimise extraneous cognitive load as far as possible. At the same time, instructors need to determine the level of intrinsic cognitive load, which is the amount of information to be presented based on the element interactivity of the learning material.

Hypothesis
1. Students will benefit from learning using worked examples.
2. Students will benefit from learning collaboratively using more-complex worked examples.
3. Students will benefit from learning less-complex worked examples individually.

Experimental Design

<table>
<thead>
<tr>
<th>Element Interactivity</th>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning approach/Setting</td>
<td>WE/Idv</td>
<td>PS/Idv</td>
</tr>
<tr>
<td></td>
<td>WE/GW</td>
<td>PS/GW</td>
</tr>
<tr>
<td>WE : Worked Example Approach</td>
<td>PS : Problem Solving Approach</td>
<td></td>
</tr>
<tr>
<td>GW : Group Work Setting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurements
Performances on similar test after each stage and transfer test at the end. Cognitive Load on all learning and test stages using a 9-scale rating.

Participants & Learning Material
Grade 7, Mathematics regular classroom
Geometry: Relation of angles formed by parallel lines and a transversal line, seven theorems to learn:
1. A revolution angle 5. Corresponding angles
2. Complementary angles 6. Alternate angles
3. Supplementary angles 7. Co-interior angles
4. Vertically opposite angles

Example of the material

1. Postline: Find the value of x and give reasons for each step.
 \[\ldots \]
 Solution: $x = \ldots$ (addition angles between parallel lines is 180°)

2. Postline: Find the value of x and give reasons for each step.
 \[\ldots \]
 Solution: $x = \ldots$ (two lines parallel to each other are 180°)

3. Postline: Find the value of x and give reasons for each step.
 \[\ldots \]
 Solution: $x = \ldots$ (two lines parallel to each other are 180°)

4. Postline: Find the value of x and give reasons for each step.
 \[\ldots \]
 Solution: $x = \ldots$ (two lines parallel to each other are 180°)
Learning Mathematics in Group Work (A Repeated Measures Experimental Design)

Abstract for Poster Presentation

This paper provides a detail description of the research methodology utilised to investigate a learning strategy based on a cognitive load theory. The current research project is proposed to investigate how students learn mathematics in a group work setting using instruction strategies based, Cognitive load theory (Sweller, 2010; Sweller, van Merrienboer, & Paas, 1998) is developed using our understanding on human cognitive architecture. In particular, this investigation attempts to further examine performances and cognitive load after learning a worked example instruction in two types of complex material during individual and group learning experiences. A worked example approach has been shown to be very effective by many studies in various domains (Atkinson, Sharon, Renkl, & Wortham, 2000) as well as its uses for group learning (Kirschner, Paas, & Kirschner, 2009, 2010; Retnowati, Ayres, & Sweller, 2010). In this experiment, worked examples for learning geometrical theorems are designed to minimise extraneous cognitive load. The group work is set up using a group role approach to stimulate individual accountability and minimise the coordination cost. A 2 (learning approach: Worked Example vs. Problem Solving) x 2 (learning setting: Individual vs. Group Work) x 2 (types of complexity: less vs. more) design will be used, where the types of complexity is the repeated measures factor. It is hypothesised that (1) students will benefit from learning using worked examples (2) students will benefit from learning collaboratively using more-complex worked examples; (3) students will benefit from learning less-complex worked examples individually.

References

Dear Endah

A poster would be very appropriate for you to present your research design and get feedback from the research community.

We will be in touch in the near future with further detail about the conference.

Regards
Kirsty

From: Endah Retnowati [z3177200@zmail.unsw.edu.au]
Sent: 15 September 2010 14:44
To: Kirsty Young
Subject: Abstract for Poster Presentation IER

Dear Dr Kirsty Young

I would like to present my early stage of research in the IER conference this year using a poster. The research has not had a data yet, but I am willing to get input in the hypothesis and experimental procedure. I am looking forward to hearing from you. Thanks.

Regards
Endah

UTS CRICOS Provider Code: 00099F
DISCLAIMER: This email message and any accompanying attachments may contain confidential information. If you are not the intended recipient, do not read, use, disseminate, distribute or copy this message or attachments. If you have received this message in error, please notify the sender immediately and delete this message. Any views expressed in this message are those of the individual sender, except where the sender expressly, and with authority, states them to be the views of the University of Technology Sydney. Before opening any attachments, please check them for viruses and defects.

Think. Green. Do.

Please consider the environment before printing this email.
Payment

Note: Intending presenters must pay registration fee at the time of emailing their Abstract. See over for Conference Registration Rates.

No GST is payable on this amount. A receipt for all payments will be issued at the Student Research Conference.

Direct deposit payment can be made: National Australia Bank (NAB)
Account name: NSW IER Inc
BSB: 082 407
Account number: 46-553-2963

Ensure you include your surname - Conf Rego

Enquiries regarding payment should be directed to:
CHEN Xiafang, Treasurer NSWIER
School of Education
University of Western Sydney
PH: 02 4736 0246
Xiafang.chen@uws.edu.au

The NSW Institute for Educational Research Inc was founded in 1928. The NSWIER mission is to encourage study, research and service in education.

NSWIER members’ entitlements include:

- Professional meetings and conferences
- Sir Harold Wyndham Memorial Lecture
- Thesis Research Awards
- Student research and travel grants
- Issues in Educational Research, a peer reviewed journal
- Occasional Newsletter and Bulletins

Further Conference Information and Enquiries:
Dr John Buchanan
John.buchanan@uts.edu.au
Phone: (02) 9514 5285

Postgraduate Research Conference 2010
Faculty of Arts and Social Sciences
University of Technology, Sydney
Kuring-Gai Campus Lindfield

15 October 2010
4pm - 8pm
Call for Proposals

Postgraduate students from all fields of educational research are invited to submit an abstract in one of the following formats:

Poster Presentation (preferred format)
200 word Abstract
The poster format is a common and accepted conference presentation format. It is ideally suited to visual presentation of ideas and allows for interaction between the researcher and people interested in his or her work. Posters will have a dedicated presentation timeslot of one hour.

Paper Presentation (limited numbers, subject to review)
200 word Abstract
Presenters have a 20 minute timeslot in which to conduct a formal conference presentation, allowing for 5 minutes question time.

- Eligible for a Regional Student Travel Grant

Proposal Instructions

Please email your 200 word abstract to:

Dr Kirsty Young
kirsty.young@uts.edu.au

Your abstract and registration must be received by **15 September**. Your abstract will be included in a printed program.

Your abstract should include:
- Researcher’s name and institution
- Contact details (email preferred)
- Name of your research supervisor
- Title of research
- An abstract of no more than 200 words

Regional Student Travel Grants
Regional Student Travel Grants of up to $300 will support regional students to present their research in a welcoming educational community. To be eligible for a grant you must be enrolled in a regional university and your abstract must be accepted for a **paper** presentation.

Publication Opportunity
Authors of selected papers are invited to submit their paper to be reviewed for possible inclusion in the journal *Issues in Educational Research*. Details will be sent to the presenters of peer reviewed **paper** presentations.

Registration

For catering purposes please register to attend and/or present a paper. Complete this form and email or send to:

Dr Kirsty Young (kirsty.young@uts.edu.au)
University of Technology, Sydney
PO Box 222 Lindfield NSW 2070

Conference Fees

Please check one box:
- Presenter: $25
- NSWIER Members and Students: $25
- Non-Member: $30

Fees include:
- Welcome Reception
- Presentations
- Conference Buffet Dinner

Your Details

NAME: Endah Retnowati
Institution: School of Education, UNSW

Postal Address: Unit 12B/161-165 Bunnerong Rd
Kingsford 2032

E-mail: z3177200@zmail.unsw.edu.au