1. Mathematical Induction

Theorem: (Principle of Finite Induction)

Let S be a set of positive integer with the following properties:
(a) The integer 1 belongs to S.
(b) Whenever the integer k belongs to S, then the next integer (k+1) must also be in S.
Then S is the set of all positive integers.

Prove a proposition using mathematical induction:

Let p(n) be proposition that true for all positive integer n. The proposition can be proved by mathematical induction using the following steps:
Step 1. P(1) is true
Step 2. Assume that p(k) is true for positive integer k, then we must show that p(k+1) is true.
If Step 1 and Step 2 are true, then we can conclude that p(n) is true for all positive integer n.

Example 1: Prove that 4 + 10 + 16 + … + (6n-2) = n (3n + 1) for all positive integer n.

2. Binomial Theorem

If n and k are any positive integer with \(0 \leq k \leq n\), then the combination of k objects from n objects, denoted by \(\binom{n}{k}\), is
\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

The Binomial Theorem: Let x and y be variables and n a positive integer, then
\[
(x + y)^n = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^j
\]

Example 2: Compute \(\sum_{k=0}^{n} (-1)^k \binom{n}{k}\).
Discussion:

1. Conjecture a formula for A^n where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and prove your conjecture using mathematical induction.

2. Conjecture a formula for $\prod_{j=1}^{n} 2^j$ and prove your conjecture using mathematical induction.

3. Compute $3 + 3.5^2 + 3.5^4 + \ldots + 3.5^{1000}$

4. Find $\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots$

5. Find $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \ldots$

6. Show that $\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \ldots + \binom{k+r}{k} = \binom{k+r+1}{k+1}$
1. Conjecture a formula for A^n where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and prove your conjecture using mathematical induction.

Answer:
2. Conjecture a formula for $\prod_{j=1}^{n} 2^j$ and prove your conjecture using mathematical induction.

Answer:
3. Compute $3 + 3.5^2 + 3.5^4 + ... + 3.5^{1000}$

Answer:
4. Find \(\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots \)

Answer:
5. Find \(\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \ldots \)

Answer:
6. Show that \(\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \ldots + \binom{k+r}{k} = \binom{k+r+1}{k+1} \)

Answer: