JURUSAN PENDIDIKAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI YOGYAKARTA

PROSIDING
SEMINAR NASIONAL KIMIA

DALAM RANGKA DIES NATALIS KE 46
JURUSAN PENDIDIKAN KIMIA

Yogyakarta, 19 Oktober 2002

ISBN 979-97260-0-X
Diterbitkan oleh Jurusan Pendidikan Kimia FMIPA UNY
Kampus Karangmalang, Sleman, Yogyakarta

© Jurusan Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam
UNY, 2002

Cetakan ke-1
Terbitan pertama tahun 2002

Katalog Dalam Terbitan (KDT)
Seminar Nasional Kimia (2002 Oktober 19 : Yogyakarta)

Prosiding/Penyunting
Endang W Laksono [et.al] - Yogyakarta : FMIPA
Universitas Negeri Yogyakarta, 2002

Universitas Negeri Yogyakarta. Fakultas Matematika dan Ilmu Pengetahuan Alam

DDC.660

ISBN. 979-97260-0-X

Penyuntingan semua tulisan dalam prosiding ini dilakukan oleh tim penyunting
Seminar Nasional Kimia dari Jurusan Pendidikan Kimia FMIPA UNY
DAFTAR ISI

Sambutan Ketua Panitia .. i
Sambutan Kajuridik Kimia ... ii
Sambutan Dekan FMIPA UNY ... iii
Daftar Isi .. v
Kata Pengantar .. ix
Tim Editor .. x
Susunan Panitia Seminar ... xi

PEMAKALAH UTAMA
Henang W., Kuncoro P.R. ... U-1
Proses Pembelajaran Kimia di SMU dalam Upaya Meningkatkan Kualitas Lulusan

PEMAKALAH – PEMAKALAH
Anti K. Prodjosantoso
 Difraksi Sinar-X Sinkrotron Di The Australian National Beamline Facility Di Pabrik Foton Tsukuba Jepang
 P. Yatiman
 Metode Analisis Diferensial Data Impedansi Elektro Kimia
 Yatihan
 Kolorimetri sebagai Salah Satu Metode Pengukuran Kecepatan Reaksi Natrium tiosulfat dengan Asam klorida
 Siti Salamah dan Agis Sugiri
 Menentukan Kondisi Optimum Ekstraksi Tanin dari Daun Sidaguri dengan Pelarut Alkohol
 Susila Kristianiingrum
 Pengaruh Lama Perendaman dan pH terhadap Perubahan Sifat Protein Kacang Hijau
 Suyanto
 Pemakaian D2-EHPA Sebagai Ionophor dalam Elektroda Selektif Ion Lantanum (III)
 Endah Sulistiawati, Eri Kurniasih, dan Titik Yuniarti
 Tinjauan Kinetika Reaksi Homogen pada Netralisasi Minyak Kacang Tanah dengan Larutan KOH
 Endang Widijantti Laksono
 √ Studi Keasaman Permukaan Nikel Berhidroksil secara Spektroskopi Infra Merah
 Erna Astuti, Aprianto dan Rohmatul Azmiyah
 Hidrolisis Protein Biji Kecipir dengan Katalisator Soda Api (NaOH)
Heru Pratomo, A.I.
 Pemisahan Zat Warna Dispersi dengan Membran Komposit
 Berpendukung secara Proses Osmosis Balik
I Kadek Sumerta, Karna Wijaya dan Iqmal Tahir
 Foto Degradasi Metilen Blue Menggunakan Katalis TiO2-
 Montmorilonit dan Sinar UV
Isana SYL
 Termogram Suhu terhadap Waktu Deret Alkohol
Uyi Sulaiman dan Dadan Hermawan
 Degradasi Fotokatalitik Fenol dalam Sampel Air Sungai Donan
 Cilacap
Anti K. Prodjosantoso
 Penentuan Struktur Senyawa Sr2-,Ca,FeAlO5 (x = 0, 0,5 dan 1)
Sulistyan dan AK. Prodjosantoso
 Sintesis dan Identifikasi Senyawa Kompleks Oksalatokromat(III)
 dan Kuprat(II)
Anti K. Prodjosantoso, Tri Haryanto
 Pemanfaatan Semen Portland Nusantara Sebagai Bahan Penstabil
 Timbal
Das Salirawati dan Eddy Sulistyowati
 Pengaruh Lama Waktu Penyimpanan ASI Ibu Bekerja terhadap
 Kadar Laktosa
Hanoch J.Sohilait
 Sintesis Senyawa Alkohol Sekunder dari Metileugenol dan Safrol
Juwarlina dan Siti Nur Djanah
 Uji Daya Anthelmintika Infusa Herba Pegagan (Centella asiatica, L)
 Terhadap Cacing Ascaridia galli Schrank secara in Vitro
Yavillatul Rochmah dan Siti Nur Djanah
 Uji Daya Anthelmintika Infusa Biji Waluh (Cucurbita moschata Duch)
 Terhadap Cacing Ascaridia galli Schrank secara in Vitro
Yuli Hartanti dan Siti Nur Djanah
 Uji Daya Anthelmintika Infusa Rimpang Bengal (Zingiber
 purpureum Roxb.) Terhadap Cacing Ascaridia galli Schrank
 secara in Vitro
Yusniar dan Siti Nur Djanah
 Uji Daya Anthelmintika Infusa Biji Ketimun (Cucumis sativus, L)
 Terhadap Cacing Ascaridia galli Schrank secara in Vitro
I. Made Sukarna
 Diskualifikasi Penggunaan Normalitas dalam Hitungan Kimia
 Larutan
Isana SYL
 Model Kemas Rapat Geometri sebagai Materi Praktikum Kimia
 Anorganik II
Rr. Lis Permanasari
Kemampuan Mahasiswa Jurusan Pendidikan Kimia Fmipa UNY dalam Menyusun Soal Kimia untuk SMU Ditinjau dari Kebenaran Konsep dan Aspek Kognitifnya 178

Sri Handayani
Sintesis Aspirin dari Minyak Gondopuro sebagai Media Pembelajaran Kimia Organik 184

Sukro Muhab
Studi terhadap Kompleks Kobalt – Fenantrolin dan Kobalt – bipiridin : Suatu Pendekatan Eksperimen dan Kimia Komputasi 189

Triyatiatma Hadinugrahaningsih
Analisis Kebutuhan untuk Pengembangan Model Pembelajaran Berbantuan Komputer dalam Praktikum Kimia Dasar di Jurusan Kimia FMIPA UNJ 198

Nurfina Aznam
Pemanfaatan Tanaman Obat Sebagai Bahan Penelitian dan Icome Generating di Perguruan Tinggi 202

Retno Arianiyung
Pemanfaatan Teknologi Fermentasi sebagai Sarana Pendukung Kemajuan Industri 208

Siti Sulastri
Peran Kimia pada Pengembangan Sumber Daya Manusia sebagai Pengolah Alam Indonesia 214

Sunarto
Penggunaan Konsentrasi Indikator Terkontrol pada Analisis secara Argentometri 222

Endang Dwi Siswani
Identifikasi Proses- Proses dalam Industri Kimia, Jenis Polutan Udara yang diahsilkan serta Teknik Penanganannya 228

Suharto, Suyanto dan Lies Permana Sari
Pemakaian Clay untuk Adsorpsi Fe dan Mn dalam Sumber Air Minum 234

Soebiyanto
Penetapan Asam Askorbat dengan Volumetri 240

Hari Sutrisno
Penggunaan Spektroskopi Absorpsi Sinar X dalam Kimia Koordinasi 245

LAMPIRAN

Surat Pengantar tentang nomor ISBN
Leaflet Seminar
PROSIDING SEMINAR NASIONAL KIMIA

Tema : Interaksi Sinergis Antara Pembelajaran, Penelitian dan Industri Kimia

Tujuan : Menggalang interaksi antar pakar pendidikan kimia, peneliti kimia serta kalangan industri dalam rangka mengantisipasi kimia, peneliti kimia serta kalangan industri dalam rangka mengantisipasi perkembangan kimia yang demikian pesat

Diterbitkan Oleh
Jurusan Pendidikan Kimia FMIPA UNY

Tim Penyunting Prosiding Seminar Nasional Kimia

Pengarah

Prof. Dr. Sukardjo
Dr Nurfina Aznam, Apt. SU
Dr. Indyah Sulistyo Arti, MS
Drs. Togu Gultom, M.Pd, M.Si
AK Prodjosantoso, Ph.D

Pelaksana

Dr. Endang Wijayanti
Retno Arianingrum, M.Si
Hera Pratomo Al., M.Si

Alamat Tim Penyunting
Jurusan Pendidikan Kimia, Kampus FMIPA Universitas Negeri Yogyakarta.
STUDI KEASAMAN PERMUKAAN NIKEL BERHIDROKSIL SECARA SPECTROSKOPI INFRA MERAH

Endang W Laksono
Jurdik Kimia, FMIPA UNY

ABSTRAK

Penelitian ini bertujuan untuk meneliti jenis site asam yang berlokasi di lapisan hidroksil pada lapisan tipis nikel oksida di atas permukaan nikel secara spektroskopii refleksi-adsorpsi infra merah (RAIRS). Permukaan dibuat melalui interaksi oksigen dengan Ni(111) pada temperatur kamar dalam kondisi yang sangat hampa dan dikontrol secara spektroskopii Auger. Site Asam pada permukaan dapat dideteksi menggunakan molekul amoniak. Hasil observasi secara RAIRS memperlihatkan adanya deformasi NH₃ pada daerah frekuensi 1550-1600 cm⁻¹ dan vibrasi hidroksil pada 3600 cm⁻¹. Hal ini memperlihatkan bahwa lapisan hidroksil yang melingkupi permukaan pulau nikel oksida (111) menunjukkan jenis site asam Brønsted.

Kata Kunci : Site asam Brønsted, RAIRS, NH₃

ABSTRACT

The aim of the present work has been investigated the type of the acid sites located on hydroxylated layer on oxide thin layer on nickel surfaces by Reflection-Absorption of Infra Red Spectroscopy (RAIRS). These surfaces have been prepared by interaction of oxygen with Ni(111) at room temperature in ultra high vacuum (UHV) condition and controlled by Auger spectroscopy. Acid sites on surfaces can be detected using molecules ammonia. By RAIRS we observed in the frequency ranges of 1550-1600 cm⁻¹ and 3600 cm⁻¹ arise from the NH₃ deformation and OH vibration. It shows that the hydroxyls layer covered nickel oxide islands indicated that this site is acid Brønsted.

Kata Kunci : Site acid Brønsted, RAIRS, NH₃

PENDAHULUAN

Konsep asam basa dalam ilmu kimia telah sejak lama dikenal. Dalam kimia permukaan sifat asam basa perannya berkaitan langsung dengan pembentukan ikatan antar muka, sebagai contoh dalam bidang katalitik sifat ini dibutuhkan untuk menganalisis kereaktifan dan keseletifan katalis-katalis. Dalam bidang kimia koloid sifat ini berguna untuk menginterpretasikan interaksi lapisan ganda (double layer) antara partikel-partikel suspensi oksida dalam larutan.

Ada 3 konsep asam basa yang telah dikenal luas, yaitu konsep asam-basa dari Arhenius, dari Brønsted-Lowry dan dari Lewis. Pada hakikatnya konsep tersebut tidak bertentangan, melainkan konsep yang satu lebih luas daripada konsep yang lain. Konsep asam-basa Arhenius mengemukakan bahwa asam adalah senyawa yang memberikan ion hidrogen dalam larutannya (Day Mc dan Selbin: 364) seperti yang digambarkan dalam reaksi berikut ini:

\[\text{HCl (aq) } \rightarrow \text{H}^+ (aq) + \text{Cl}^- (aq) \](1)

HCl adalah asam Arhenius. Definisi asam dari Brønsted-Lowry menyebutkan bahwa asam adalah proton donor (Cotton dan Wilkinson:169), yang berarti tidak terbatas hanya pada pelepasan ion hidrogen saja, seperti pada reaksi (2) di bawah ini:

PENGESAHAN
TELAH DIPERIKSA KEBENARANNYA
DAN SUDAH DENGAN ASLINYA

Drs. HERU NURCAHYO
NIP. 19620414 198803 1 603
2NH₃ \[NH₄^+ + NH_2^- \] \(\text{(2)} \)

NH₄⁺ adalah asam Brønsted-Lowry dan NH₃ disebut sebagai basa Brønsted-Lowry. Sedangkan Lewis mendefinisikan asam secara lebih luas atau umum sebagai aksor peiasangan elektron (Cotton dan Wilkinson:170), seperti contoh berikut ini

\[H_3N: + BF_2 \quad H_3N:=BF_3 \] \(\text{(3)} \)

NH₃ adalah basa Lewis dan BF₃ adalah asam Lewis.

\[\text{MOH}_{\text{permukaan}} + \text{OH}^- \leftrightarrow \text{MO}^+_{\text{permukaan}} + \text{H}_2\text{O} \] \(\text{(4)} \)

\[\text{MOH}_{\text{permukaan}} + \text{OH}^- \leftrightarrow \text{MOH}_2^+_{\text{permukaan}} \] \(\text{(5)} \)

Gambar 1. Model ikatan antara permukaan dengan oksigen udara

Menurut Bolger, permukaan yang mengandung gugus hidroksil akan terion menjadi permukaan bermuatan positif \(\text{MOH}_2^+ \) karena mengikat \(\text{H}^+ \) dari udara.

\[\text{MOH}_{\text{permukaan}} + \text{H}^+ (\text{udara}) \leftrightarrow \text{MOH}_2^+ \] \(\text{(6)} \)

Sifat asam- basa permukaan ini digunakan pula dalam reaksi katalisis heterogen, misalnya untuk mengikatkan molekul amoniak (atom nitrogen) dalam katalis, ada kemungkinan molekul nitrogen dari amoniak berikatan dengan logam atau kation secara langsung (tipe asam Lewis dan adsorpsi disosiatif), namun dapat pula atom nitrogen dari
amoniak berikatan melalui atom oksigen permukaan (tipe ikatan hidrogen atau site asam Bronsted atau transfer proton). Gambar merupakan model ikatan yang terjadi pada katalis heterogen yaitu melalui ikatan hidrogen (gambar 2a), transfer proton (gambar 2b), interaksi asam-basa tipe Lewis (gambar 2c) dan adsorpsi disosiatif (gambar 2d).

Gambar 2. Ikatan antara amoniak dalam katalis heterogen berdasarkan sifat permukaannya

Telah diketahui pula bahwa interaksi oksigen dengan Ni(111) pada temperatur kamar akan menghasilkan pulau NiO(111) (Kitakatsu:36), dan NiO(111) akan distabilkan oleh lapisan hidroksil (Rohr: L977). Kuantitas lapisan hidroksida yang terbentuk tergantung pada lamanya oksidasi dan besar tekanan yang digunakan. Secara umum lapisan hidroksida pada pertumbuhan permukaan oksida dapat digambarkan sebagai gambar 3 berikut ini:

Gambar 3. Struktur permukaan NiO(111) yang distabilkan oleh gugus hidroksil

Gas amoniak dapat digunakan sebagai tester untuk mengetahui jenis site asam apa yang terdapat pada permukaan, seperti yang dilakukan oleh Ma (H.Ma: 120) pada lapisan tipis anodik diatas Cr(110). Permukaan yang dihasilkan oleh oksidasi Ni(111) pada temperatur kamar, akan diteliti jenis site asamnya menggunakan amoniak dan menggunakan spektroskopii RAIRS. Penggunaan spektrometer RAIRS diharapkan dapat menentukan spesi molekul yang diadsorpsi, dengan demikian dapat pula diketahui jenis muatan atau tipe site asam yang terbentuk pada permukaan tersebut.

METODOLOGI PENELITIAN

Penelitian ini dilakukan secara in-situ. Kristal tunggal nickel yang berorientasi (111) disiapkan dengan cara dibersihkan secara mekanik dan elektrokimia dengan larutan asam sulfat. Kemudian sampel dimasukkan pada alat IRRAS tipe IR 550 yang dilengkapi dengan spektroskopii Auger dan ruang hampa. Alat ini menggunakan detektor tipe MCT (Mercury Cadmium Telluride). Sampel dibersihkan menggunakan metode bombardir ion argon bertekanan 10⁻⁵ tor selama beberapa menit, diikuti dengan pemanasan 500°C dan
pendinginan. Untuk mengetahui komposisi permukaan sebelum dan setelah pembersihan digunakan spektroskopi Auger.

Lapisan tipis oksida pada permukaan nikel disiapkan dengan cara mengalirkan gas oksigen bertekanan 3×10^{-7} torr pada temperatur 300K, selama 2 menit (40 Langmuir). Untuk mengetahui lapisan oksida yang terbentuk digunakan spektroskopi Auger.

Amoniak sebagai penunjuk adanya jenis site asam dialirkan pada tekanan 5. 10^{-7} torr pada temperatur 300K (kamar) selama pengaliran amoniak, analisis dilakukan terus menerus (kondisi kran terbuka), hingga selama beberapa saat dan aliran amoniak dihentikan. Signal spektra diperoleh pada resolusi 4 cm$^{-1}$ dan 600 kali ulangan. Spektrum RAIRS yang didapat diinterpretasikan menggunakan software OMNIC dan ditampilkan menggunakan program ORIGIN.

HASIL PENELITIAN DAN PEMBAHASAN

Sampel yang telah dibersihkan secara mekanik dan elektrokimia, dibersihkan di dalam alat menggunakan ion argon pada tekanan selama 15 sampai 25 menit dilanjutkan dengan pemanasan pada suhu 500°C selama beberapa menit, dan dikontrol menggunakan spektroskopi Auger.

Gambar 1 berikut menunjukkan komposisi permukaan setelah pembersihan. Namun bahwa pada permukaan tidak terdeteksi pengotor maupun oksigen. Sedangkan gambar 2 memperlihatkan komposisi permukaan setelah dialiri gas oksigen beberapa saat. Tampak terlihat puncak oksigen pada energi kinetik 510 eV. Dari hasil perhitungan melalui perbandingan intensitas puncak oksigen dan Nikel 0.02.

![Gambar 1. Spektrum Auger permukaan Ni(111) bersih](image1)

![Gambar 2. Spektrum Auger permukaan NiO(111)](image2)

Analisis secara RAIRS setelah sampel dialiri gas amoniak selama 8 menit dan 35 menit dapat dilihat pada gambar 3. Dari kedua spektrum RAIRS tampak bahwa ada puncak pada daerah frekuensi 1150 sampai 1200 nm yang merupakan pita karakteristik
untuk adsorpsi molekuler amoniak, yaitu deformasi simetrik amoniak. Pita ini berkaitan dengan puncak lain yang berada pada 3200 nm yaitu vibrasi simetrik amoniak. Hasil ini sejalan dengan hasil penelitian Ma yang dilakukan pada sistem NH₃/Cr₂O₇/Cr (110) (Ma : 85).

Gambar 3. Spektrum RAIRS setelah sampel dialiri gas amoniak

Spektrum RAIRS yang ditampilkan dipotong antara frekuensi 2300 sampai 2500 cm⁻¹, daerah ini menunjukkan adanya kontaminasi CO akibat adanya trayek optik dari alat yang digunakan dan tidak dapat dihilangkan pada spektra. Gangguan ini tidak mengganggu permukaan sampel yang diteliti, karena berada di luar sistem permukaan, tetapi dapat dideteksi oleh detektor.

Posisi 1550-1600 cm⁻¹ dapat dinyatakan sebagai adsorpsi deformasi NH₃ sesuai dengan penelitian yang dilakukan pada sistem O₂/NH₃/Ni(110) (IC Basignana : 25) dan untuk sistem O₂/NH₃/Cu(110) (B. Afsin :117). NH₃ yang terjadi ini timbul akibat reaksi amoniak dengan oksigen yang ada pada permukaan dan menghasilkan air menurut reaksi berikut ini:

\[
\text{NH}_3 \text{ (ads)} + \text{O (permukaan)} \rightarrow \text{NH}_4^+ + \text{OH}^- \](7)

Reaksi tersebut juga diamati oleh Robert dkk pada sistem NH₃/Ni/Cu(111)(Robert : 133). NH₃ yang bereaksi menurut reaksi (7) adalah hasil adsorpsi, bila hal ini dikaitkan dengan intensitas puncak 1200-1150 nm pada gambar 3 antara (a) yaitu dianalysis setelah 8 menit dan (b) dianalysis setelah 35 menit, maka perbedaan intensitas puncak diakibatkan adanya sebagian NH₃ yang bereaksi dengan oksigen permukaan, membentuk NH₄⁺. Selain itu pada daerah 3600 cm⁻¹ juga diamati puncak dari vibrasi hidroksil. Namun bahwa pada spektrum (b) puncak 3600 nm intensitasnya lebih tinggi dibandingkan puncak spektrum (a), hal ini diakibatkan adanya penambahan gugus hidroksil menurut reaksi (7).
Oksigen pada permukaan dapat mengikat satu hidrogen dari amoniak dan membentuk ion amida sehingga dapat dikatakan bahwa permukaan telah mendonorkan proton pada amoniak. Fakta ini adanya transfer proton dari permukaan pada adsorbat, dan bila dikaitkan dengan tipe site asamnya maka permukaan menunjukkan adanya site asam tipe Brønsted. Hasil ini sejalan dengan yang dilakukan oleh Endang Laksono menggunakan spektroskopii photoelektron sinar-X (E.Laksono: 174), bahwa pada permukaan yang mengandung lapisan gugus hidroksil dengan tebal kurang dari 2,5 Angstrom dan lapisan oksida 9 Angstrom mempunyai site asam tipe Brønsted. Penelitian lain yang dilakukan menggunakan spektrometer photoelektron sinar-X dengan dosis yang sama mempunyai ketebalan lapisan oksida 0,5 Angstrom dan ketebalan lapisan hidrosida 0,4 Angstrom.

Puncak pada daerah 1800 cm⁻¹ merupakan pita sistem logam dan amoniak, menurut Dastoor (Dastoor: 281) pita ini berada pada daerah 1600-1800 cm⁻¹, karena adanya kontaminasi dengan CO. Menurut Kulkarni pada penelitiannya koadsorpsi amoniak dan oksigen pada Ni(110) (Kulkarni: 3315) pada campuran kaya akan amoniak maka permukaan akan mengadopsi NH₂-CO pada 1870 cm⁻¹ yang merupakan daerah deformasi simetrik. Namun bisa pula merupakan pembentukan NO akibat koadsorpsi amoniak dan oksigen yang kaya akan oksigen (Kulkarni: 3316). Pita ini dapat berpindah-pindah menurut kondisi penelitian, karena untuk logam kalium pita ini dapat diamati pada daerah 2066 cm⁻¹, untuk penelitian ini kemungkinan lebih relevan dengan kehadiran CO pada permukaan.

KESIMPULAN

Berdasarkan penelitian pada lapisan tipis oksida pada permukaan nikel berorientasi (111) yang distabilkan oleh lapisan hidroksida akibat oksidasi yang dilakukan pada 40 Langmuir pada temperatur kamar menggunakan molekul gas amoniak maka dapat ditentukan bahwa permukaan bertipe asam Brønsted, melalui spesi yang dapat diinterpretsikan dari spektrum RAIRS pada daerah frekuensi deformasi NH₂ 1550-1600 cm⁻¹ dan vibrasi hidroksil pada 3600 cm⁻¹.

DAFTAR PUSTAKA

Cotton dan Wilkinson, 1976, *Basic Inorganic Chemistry*, New York : John Willey and Sons

G.U. Kulkarni, C.N.R. Rao dan M.W. Roberts, 1995, *Nature of Oxygen Species at Ni(110) and Ni(100) Surfaces Revealed by Exposure to Oxygen and Oxygen-
Ammonia Mixtures: Evidence for the Surfaces Reactivity of O Type Species: J. Physical Chem. 99, 3310-3316

H. Ma, 1999, Etude NH3 sur Cr(110), Thèse Université de Paris VI, France

