1. Faculty /Study Program : Mathematics and Science/Mathematics Education
2. Course & Code : Computer Application, MAA311
3. Credit : Theory : 2 sks Practice: 1 sks
4. Semester/Time : IV Time: 100 minutes
5. Basic competence : Students are able to use symbolic math toolbox in MATLAB
6. Indicator :
 Student can:
 • define Variable and Symbolic expression
 • use subs command
 • extract numerator and denominator
 • solve algebra operation.
 • find differential of a one variable function
 • solve limit of a function
 • find integral
 • solve the infinite summation
 • use the Collect, expand and factor command
7. Essential Concepts : Computer application for handle symbolic expression using MATLAB
8. Learning Activity : 19

<table>
<thead>
<tr>
<th>Component</th>
<th>Detail Activity</th>
<th>Time</th>
<th>Method</th>
<th>Media</th>
<th>References</th>
<th>Character</th>
</tr>
</thead>
</table>
| Opening | • Lecturer greets the students and asks some students to tell some important points of the topic in the last meeting
 • Lecturer explains the objective of the topic and gives motivation
 • Students execute the commands to solve symbolic function using computer by following the instruction in the handout
 • In pair, students discuss to get the main meaning of the commands
 • Lecturer observes the students activity and gives some comments or explanations.
 • Lecturer activates | 5' | Explanation and Discussion | Computer, LCD | A:57 | Thinking logically, critically, creatively, and innovatively |
| Main Activities | | 80' | Explanation | Demonstration, Discussion, practice, group work | | Caring about social matters and environment |
| | | | | | | Appreciative of works and achievements of others |
discussion in order students get the important information about the command and make some notes in handout

- Lecturer facilitates students to get further information about the topic

<table>
<thead>
<tr>
<th>Component</th>
<th>Detail Activity</th>
<th>Time</th>
<th>Method</th>
<th>Media</th>
<th>References</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening</td>
<td>Lecturer greets students and asks some students to tell the main idea of last topic, and delivers a lab sheet</td>
<td>5’</td>
<td>Explanation and Discussion</td>
<td>Computer, worksheet</td>
<td></td>
<td>Thinking logically, critically, creatively, and innovatively</td>
</tr>
<tr>
<td>Main Activities</td>
<td>Students practice and do exercises to solve some problems using symbolic math toolbox. Students submit their result to the lecturer</td>
<td>80’</td>
<td>Practicum using computer, by self/in a group</td>
<td>worksheet / quiz</td>
<td></td>
<td>Caring about social matters and environment</td>
</tr>
<tr>
<td>Closure</td>
<td>Lecturer gives feedback to the result of students’ work</td>
<td>10’</td>
<td>Explanation</td>
<td></td>
<td></td>
<td>Appreciative of works and achievements of others</td>
</tr>
<tr>
<td>Follow up</td>
<td>Lecturer gives introduction of the next material Students are asked to read the next topic in handout and open HELP in MATLAB about the topic</td>
<td>5’</td>
<td>Explanation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Activity : 20 (practice, 1 sks practice = 100’)

- Lecturer facilitates students to get further information about the topic.
- Students are supposed to solve the problem using the other mathematics software (maple or mathematica).
- Students practice and do exercises to solve some problems using symbolic math toolbox.
- Students submit their result to the lecturer.
- Lecturer gives feedback to the result of students’ work.
- Lecturer gives introduction of the next material.
- Students are asked to read the next topic in handout and open HELP in MATLAB about the topic.
9. Assessment

Quiz:

i). Given: \(f(x) = \frac{x^2 - 2}{x + 3} \) \(g(x) = \frac{x^3 - 2x}{x + 5} \) \(h(x) = \frac{2}{x - 1} \)

 determine:

 a. \(f+g \)
 b. \(f.h \)
 c. \(g/h \)
 d. \(f+h \)
 e. \(g.h \)
 f. numden (f)
 g. \(g+h \)
 h. \(f/g \)
 i. numden (g)
 j. \(f.g \)
 k. \(f/h \)
 l. numden(h)

ii). Given: \(f(x) = \frac{x + 3}{3u - 2} \) \(g(x) = \frac{u^2}{v - 5} \)

 Determine :

 a. \(f.g(x) \)
 b. \(g.f(x) \)
 c. \(f.g(v) \)
 d. \(g.f(u) \)

iii). Determine of \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) if given

 a. \(y = \{\log(3x + 2)\}^{\sin^{-1}(2x + 5)} \)
 b. \(xy - \log y = 1 \)
 c. \(y = \sin^2(3x + \pi/6) \)

10. Reference

Compulsory:

A. Sri Andayani, Handout of Computer Application, FMIPA UNY 2009

Additional:

Yogyakarta, 21 December 2010

Professor,

Sri Andayani, M.Com
NIP 19720426 199702 2 001