QUANTITATIVE METHODS

QUANTITATIVE METHODS provide a forum for communication between statisticians and mathematicians with the users of applied statistical and mathematical techniques among a wide range of areas such as operations research, computing, actuary, engineering, physics, biology, medicine, agriculture, environment, management, business, economics, politics, sociology, and education. The journal will emphasize on both the relevance of numerical techniques and quantitative ideas in applied areas and theoretical development, which clearly demonstrate significant, applied potential.

Editor in Chief:
Dr. Noor Akma Ibrahim
Department of Mathematics, Universiti Putra Malaysia,
The Institute of Mathematical Research, Universiti Putra Malaysia

Editorial Assistant:
Dr. Jamal I Daoud
Department of Sciences, Faculty of Engineering
International Islamic University Malaysia

Editors:
Dr. Zhenbing Zeng
Shanghai Institute for Biological Sciences
Chinese Academy of Science

Dr. Raihan Othman
Department of Science
International Islamic University, Malaysia

Dr. Ismail Bin Mohd
Department of Mathematics
University Malaysia Trengganu, Malaysia

Chen-ju Lin, Ph.D
Dept. of Industrial Engineering&Management
Yuan Ze University, Taiwan

Dr. Andreas Dress
Max Plank Institute or Math. in the Sciences
Inselstrasse 22-26, D04103 Leipzig, Germany

Dr. Pieter N.Juho
Department of Mathematics,
Natal University, South Africa

Dr. Sannay Mohamad
Department of Mathematics
University Brunei Darussalam,
Brunei Darussalam

Dr. Faiz A.M. Elfaki
Department of Sciences
International Islamic University, Malaysia

Dr. Mat Rofa Ismail
Department of Mathematics
University Putra Malaysia, Malaysia

Dr. Maher Taka
Faculty of Planning and Management
Al Balqa, Applied University, Al-Salt, Jordan

Dr. Hon Wai Leong
Department of Mathematics
National University of Singapore, Singapore

Dr. Mustofa Usman
Department of Mathematics
University of Lampung, Indonesia

Dr. Muhammad Azam Khan
University of Science and Technology Bannu,
NWFP-Pakistan

Dr. Zainodin Haji Jubok
Centre for Academic Advancement
University Malaysia Sabah,
Malaysia
TABLE OF CONTENTS

Data Envelopment Analysis For Stocks Selection On Bursa Malaysia..................
Ong Poay Ling, Anton Abdulbasah Kamil, Mohd Nain Hj. Awang 1

On Group Method Of Data Handling (GMDH) For Data Mining..................
Iing Lukman, Noor Akma Ibrahim, Indah Lia Puspita and Eka Sariningsih 26

Stem Biomass Estimation of *Roystonea Regia* Using Multiple Regression
Noraini Abdullah, Zainodin Hj. Jubok, Amran Ahmed. 39

Continued Fraction and Diophantine Equation...
Yusuf Hartono 49

Risk Analysis Of Traffic And Revenue Forecasts For Toll Road Investment In Indonesia
I Rudy Hermawan K., Ade Sjafruddin, dan Weka Indra Dharmawan 54

Use Of Ranks For Testing Fixed Treatment Effects In Basic Latin Square Design
Sigit Nugroho 61

Analysis Of Good Corporate Governance Structure Effects On Bond Rating........
Einde Evana, Agrianti KSA, and R. Weddie Andryanto 69

A New Method for Generating Fuzzy Rules from Training Data and Its Application To
Forecasting Inflation Rate and Interest Rate of Bank Indonesia Certificate
Agus Maman Abadi, Subanar, Widodo and Samsubar Saleh 78

Mean–var Portfolio Optimization Under Capm with Lagged, Non Constant Volatility
and The Long Memory Effect ..
Sukono, Subanar and Dedi Rosadi 84
A NEW METHOD FOR GENERATING FUZZY RULES FROM TRAINING DATA AND ITS APPLICATION TO FORECASTING INFLATION RATE AND INTEREST RATE OF BANK INDONESIA CERTIFICATE

Agus Maman Abadi¹, Subanar², Widodo³ and Samsubar Saleh³

¹Department of Mathematics Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Indonesia
²Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Indonesia
³Department of Economics, Faculty of Economics and Business, Gadjah Mada University, Indonesia

Jl. Humaniora, Bulaksumur Yogyakarta 55281, Indonesia

Email: ¹mamanabadi@vmail.com, ²subanar@yahoo.com, ³widodo_math@yahoo.com, ³humas@psue.ugm.ac.id

Abstract. Table lookup scheme is a simple method to construct fuzzy rules of fuzzy model. That can be used to overcome the conflicting rule by determining each rule degree. The weakness of fuzzy model based on table lookup scheme is that the fuzzy rules may not be complete so the fuzzy rules can not cover all values in the domain. In this paper a new method to generate fuzzy rules from training data will be proposed. In this method, all complete fuzzy rules are identified by firing strength of each possible fuzzy rule. Then, the resulted fuzzy rules are used to design fuzzy model. Applications of the proposed method to predict the Indonesian inflation rate and interest rate of Bank Indonesia Certificate (BIC) will be discussed. The predictions of the Indonesian inflation rate and interest rate of BIC using the proposed method have a higher accuracy than those using the table lookup scheme.

Keywords: fuzzy rule, fuzzy model, firing strength of rule, inflation rate, interest rate of BIC.

1. Introduction

Designing fuzzy rule base is one of some steps in fuzzy modeling. Fuzzy rule base is the heart of fuzzy model. Recently, fuzzy model was developed by some researchers. Wang, L.X. (1997) created fuzzy model based on table lookup scheme, gradient descent training, recursive least squares and clustering methods. The weakness of the fuzzy model based on table lookup scheme is that the fuzzy rule base may not be complete so the fuzzy rule can not cover all values in the domain. Wu, T.P. and Chen, S.M. (1999) designed membership functions and fuzzy rules from training data using α -cut of fuzzy sets. In Wu and Chen's method, determining membership functions and fuzzy rules needs large computations. To reduce the complexity of computation, Yam, Y., et al (1999) built a method to decrease fuzzy rules using singular value decomposition.

Fuzzy models have been applied to many fields such as in communications, economics, engineering, medicine, etc. Specially in economics, Abadi, A.M., et al (2006) showed that forecasting the Indonesian inflation rate by fuzzy model resulted more accuracy than that by regression method. Then, Abadi, A.M., et al (2007) constructed fuzzy time series model using table lookup scheme to forecast the interest rate of Bank Indonesia certificate (BIC) and its result gave high accuracy. Then, Abadi, A.M., et al (2008b) showed that forecasting Indonesian inflation rate based on fuzzy time series data using combination of table lookup scheme and singular value decomposition there a much less agreement on how to make the decision.

The results of the fuzzy rule base for forecasting inflation rate and interest rate of BIC using the proposed method have a higher accuracy than those using the table lookup scheme.

2. WANG Model

In this section we will discuss Wang's method. Suppose $x_i \in [a_i, b_i]$ by the following steps:

Step 1. For each $i = 1, 2, \ldots, n$.

Step 2. Similar to Step 1.

Step 3. For each $i = 1, 2, \ldots, n$.

Step 4. From step 3, we have $\mu_{y_i}(y) = 1$ for y_i.

Step 5. From step 4, we can define fuzzy set \mathcal{A}. The rule base \mathcal{A} is nothing but different degrees of $\mu_{y_i}(y)$.

3. New Method

Given the fuzzy model $y \in [a_i, b_i]$ with any $x_i \in [\alpha, \beta]$ from human perception, we can define fuzzy model \mathcal{A} in the following way:

The result of fuzzy rule base for forecasting inflation rate and interest rate of BIC using the proposed method have a higher accuracy than those using the table lookup scheme.
decomposition methods had a higher accuracy than that using Wang’s method. Based on the previous research, there are interesting topics in fuzzy model especially in determining fuzzy rules that give good prediction accuracy. To overcome the weakness of table lookup scheme (Wang’s method), in this paper, we design complete fuzzy rules of fuzzy model using firing strength of rule and then its result is used to predict the Indonesian inflation rate and interest rate of BIC. The proposed method has higher prediction accuracy than Wang’s method in its applications to predicting the Indonesian inflation rate and interest rate of BIC.

The rest of this paper is organized as follows. In section 2, we briefly review the Wang’s method to construct fuzzy model. In section 3, we present a new method to construct complete fuzzy rules using firing strength of rule based on training data. In section 4, we apply the proposed method to forecasting the inflation rate and interest rate of BIC. We also compare the proposed method with the Wang’s method in the forecasting inflation rate and interest rate of BIC. Finally, some conclusions are discussed in section 5.

2. Wang’s method for designing fuzzy rules

In this section, we will introduce the Wang’s method to construct fuzzy rules referred from Wang, L.X. (1997). Suppose that we are given the following N input-output data: $(x_p, y_p), p = 1, 2, 3, ..., N$ where $x_p = [\alpha, \beta] \subseteq R$ and $y_p = [\alpha, \beta] \subseteq R$, $i = 1, 2, ..., n$. Designing fuzzy model using Wang’s method is given by the following steps:

Step 1. Define fuzzy sets to cover the input and output domains.
For each space $[\alpha, \beta], i = 1, 2, ..., n$, define N_i fuzzy sets $A^i_j, j = 1, 2, ..., N_i$ which are complete in $[\alpha, \beta]$.
Similarly, define N_y fuzzy sets $B^i_j, j = 1, 2, ..., N_y$ which are complete in $[\alpha, \beta]$.

Step 2. Generate one rule from one input-output pair.
For each input-output pair (x_p, y_p), determine the membership value of x_p in fuzzy sets $A^i_j, i = 1, 2, ..., n$ and membership value of y_p in fuzzy sets $B^i_j, j = 1, 2, ..., N_y$. Then, for each input variable $x_p, i = 1, 2, ..., n$, determine the fuzzy set in which x_p has the largest membership value. In other word, determine A^i such that $\mu^i(x_p) = \max \mu^i(x_p), j = 1, 2, ..., N_y$. Similarly, determine B^i such that $\mu^i(y_p) = \max \mu^i(y_p), i = 1, 2, ..., N_i$. Finally, we construct a fuzzy IF-THEN rule:

$$\text{IF } x_p \in A^i \text{ and } x_p \in B^i \text{ and } ... \text{ and } x_p \in A^i \text{ THEN } y_p \in B^i$$

(1)

Step 3. Compute degree of each rule designed in step 2.
From step 2, one rule is generated by one input-output pair. If the number of input-output data is large, then it is possible that there are the conflicting rules. Two rules become conflicting rules if the rules have same IF parts but different THEN parts. To resolve this problem, we assign a degree to each rule designed in step 2. The degree of rule is defined as follows: suppose the rules (1) is constructed by the input-output pair $(x_p, x_p, ..., x_p, y_p)$, then its degree is defined as

$D(\text{rule}) = \prod_{a} \mu^a(x_p) \mu^a(y_p)$

Step 4. Construct the fuzzy rule base.
The rule base consists of the following three sets of rules: (1) The rules designed in Step 2 that do not conflict with any other rules; (2) The rule from a conflicting group that has the maximum degree; (3) Linguistic rules from human experts.

Step 5. Construct the fuzzy model using the fuzzy rule base.
We can use any fuzzifier, fuzzy inference engine and defuzzifier combined with the fuzzy rule base to design fuzzy model. If the number of training data is N and the number of all possible combinations of the fuzzy sets defined for the input variables is $\prod_{a} N$, then the number of fuzzy rules generated by Wang’s method may be much less than both N and $\prod_{a} N$. Then, the fuzzy rule base generated by this method may not be complete so that the fuzzy rules can not cover all values in the input spaces. To overcome this weakness, we will design the fuzzy rules covering all values in input spaces.

3. New method for constructing fuzzy rules

Given the following N training data: $(x_p, y_p), p = 1, 2, 3, ..., N$ where $x_p = [\alpha, \beta] \subseteq R$ and $y_p = [\alpha, \beta] \subseteq R$, $i = 1, 2, ..., n$. We will introduce a new method to design fuzzy rules. The method is given by the following steps:
Step 1. Define fuzzy sets to cover the input and output spaces.
For each space \([\alpha_i, \beta_i], i = 1, 2, ..., n\), define \(N_i\) fuzzy sets \(A'_{i,j}, j = 1, 2, ..., N_i\) which are complete and normal in \([\alpha_i, \beta_i]\). Similarly, define \(N_j\) fuzzy sets \(B'_{i,j}, j = 1, 2, ..., N_j\) which are complete and normal in \([\alpha_i, \beta_i]\).

Step 2. Determine all possible antecedents of fuzzy rule candidates.
Based on the Step 1, there are \(\prod_{i=1}^n N_i\) antecedents of fuzzy rule candidates. The antecedent has form
\(x_i = A'^i_{1} \text{ and } x_{i+1} = A'^i_{2} \text{ and } ... \text{ and } x_i = A'^i_{N'}\) simplified by \(A'^i_{1} \text{ and } A'^i_{2} \text{ and } ... \text{ and } A'^i_{N'}\). For example, if we have two input and define two fuzzy sets \(A, A'\) for first input space and \(C, C'\) for second input space, then all possible antecedents of fuzzy rule candidates are \(A \text{ and } C\); \(A' \text{ and } C\); \(A \text{ and } C'\); \(A' \text{ and } C'\).

Step 3. Determine consequence of each fuzzy rule candidate.
For each antecedent \(A'^i_{1} \text{ and } A'^i_{2} \text{ and } ... \text{ and } A'^i_{N'}\), the consequence of fuzzy rule is determined by firing strength of the rule \(\mu_{A'^i_{1}}(x_{1}) \mu_{A'^i_{2}}(x_{2}) \cdots \mu_{A'^i_{N'}}(x_{N'}) \mu_{B'}(y)\) based on the training data. Choosing the consequence is done as follows: For any training data \((x_{1}, x_{2}, ..., x_{N'}, y)\) and for any fuzzy set \(B'\), choose \(B''\) such that
\(\mu_{A'^i_{1}}(x_{1}) \mu_{A'^i_{2}}(x_{2}) \cdots \mu_{A'^i_{N'}}(x_{N'}) \mu_{B'}(y) \geq \mu_{A'^i_{1}}(x_{1}) \mu_{A'^i_{2}}(x_{2}) \cdots \mu_{A'^i_{N'}}(x_{N'}) \mu_{B''}(y)\), for some \((x_{1}, x_{2}, ..., x_{N'}, y)\). If there are at least two \(B''\) such that
\(\mu_{A'^i_{1}}(x_{1}) \mu_{A'^i_{2}}(x_{2}) \cdots \mu_{A'^i_{N'}}(x_{N'}) \mu_{B''}(y) \geq \mu_{A'^i_{1}}(x_{1}) \mu_{A'^i_{2}}(x_{2}) \cdots \mu_{A'^i_{N'}}(x_{N'}) \mu_{B''}(y)\), then choose one of \(B''\). From this step, we have the fuzzy rule:
\[\text{IF } x_i = A'^i_{1} \text{ and } x_{i+1} = A'^i_{2} \text{ and } ... \text{ and } x_i = A'^i_{N'}, \text{ THEN } y = B''\]
So if we continue this step for every antecedent, we get \(\prod_{i=1}^n N_i\) complete fuzzy rules.

The fuzzy rule base is constructed by the \(\prod_{i=1}^n N_i\) fuzzy rules designed by Step 3.

Step 5. Design fuzzy model using fuzzy rule base.
Fuzzy model is designed by combining the fuzzy rule base and any fuzzifier, fuzzy inference engine and defuzzifier. For example, if we use singleton fuzzifier, product inference engine and center average defuzzifier, then the fuzzy model has form:
\[f(x_1, x_2, ..., x_n) = \frac{\sum_{j=1}^{N_r} \mu_j(x_i)}{\sum_{j=1}^{N_r} \mu_j(x_i)}\]
where \(M\) is the number of rules.

From Step 3, the set of fuzzy rules constructed by this method contains fuzzy rules designed by the Wang’s method. Therefore the proposed method is the generalization of the Wang’s method.

4. Applications of the proposed method
In this section, we apply the proposed method to forecast the Indonesian inflation rate and interest rate of BIC. The proposed method is implemented using Matlab 6.5.1.

4.1 Forecasting inflation rate
The data of inflation rate are taken from January 1999 to January 2003. The data from January 1999 to March 2002 are used to training and the data from April 2002 to January 2003 are used to testing. The procedure to forecasting inflation rate based on the proposed method is given by the following steps:

1. Define the universe of discourse of each input. In this paper, we will predict the inflation rate of month \(k\) using inflation rate data of months \(k-1\) and \(k-2\) so we will build fuzzy model using 2-input and 1-output. The universe of discourse of each input is defined as \([-2, 4]\).

2. Define fuzzy sets on universe of discourse of each input such that fuzzy sets can cover the input spaces. We define thirteen fuzzy sets \(A, A', ..., A_n\) that are normal and complete on \([-2, 4]\) of each input space with Gaussian membership function.

3. Determine all possible antecedents of fuzzy rule candidates. There are 169 antecedents of fuzzy rule candidates and the consequence of each antecedent is chosen using Step 3 of the proposed method. So we have 169 fuzzy rules in the form:
\[R': \text{IF } x_{k-2} = A_{i_1} \text{ and } x_{k-1} = A_{i_2}, \text{ THEN } x_k = A'_{i_3}\]
where \(j = 1, 2, \ldots , 169 \), \(i, i_1 = 1,2, \ldots , 13 \) and \(A^j \in \{ A_1, A_2, \ldots , A_l \} \).

(4). Construct fuzzy rule base from fuzzy rules designed in Step 3.

(5). Design fuzzy model combining the fuzzy rule base and certain fuzzifier, fuzzy inference engine and defuzzifier. In this paper, we use singleton fuzzifier, minimum and product inference engines, center average defuzzifier.

Table 1. Comparison of mean square errors of forecasting inflation rate using the Wang’s method and proposed method

<table>
<thead>
<tr>
<th>Methods</th>
<th>Number of fuzzy rules</th>
<th>MSE of training data</th>
<th>MSE of testing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang’s method</td>
<td>23</td>
<td>0.47860</td>
<td>0.45780</td>
</tr>
<tr>
<td>Proposed method</td>
<td>169</td>
<td>0.43436</td>
<td>0.40787</td>
</tr>
</tbody>
</table>

Table 1 shows a comparison of the MSE of training and testing data based on the Wang’s method and proposed method. There are twenty three fuzzy rules generated by the Wang’s method and there are 169 fuzzy rules constructed by the proposed method. The prediction of inflation rate by the Wang’s method with singleton fuzzifier, product inference engine and center average defuzzifier has a higher accuracy than that with singleton fuzzifier, minimum inference engine and center average defuzzifier.

Table 1 illustrates that the forecasting inflation rate by the proposed method with singleton fuzzifier, minimum inference engine and center average defuzzifier has a higher accuracy than that with singleton fuzzifier, product inference engine and center average defuzzifier. The true values and prediction values of the inflation rate based on the Wang’s method and the proposed method using minimum and product inference engines are shown in Figure 1 and Figure 2 respectively.

Fig. 1. The prediction and true values of inflation rate based on the Wang’s method using: (a) minimum inference engine; (b) product inference engine

Fig. 2. The prediction and true values of inflation rate based on the proposed method using: (a) minimum inference engine; (b) product inference engine
4.2 Forecasting interest rate of Bank Indonesia certificate

The data of the interest rate of BIC from January 1999 to December 2001 are used to training and the data from January 2002 to February 2003 are used to testing. The interest rate of BIC of \(k \)th month will be predicted by data of interest rate of BIC of \((k-1)\)th and \((k-2)\)th months so we will build fuzzy model using 2-input and 1-output which universe of discourse of each input is \([10, 40]\). Seven fuzzy sets are defined in every input space with Gaussian membership function. The other steps to forecasting the interest rate of BIC use the same steps of the predicting inflation rate.

| Method | Number of fuzzy rules | MSE of training data | MSE of testing data | Average forecasting errors of testing data (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang's method</td>
<td>12</td>
<td>0.98759</td>
<td>1.0687</td>
<td>0.46438</td>
</tr>
<tr>
<td>Proposed method</td>
<td>49</td>
<td>0.95361</td>
<td>0.91682</td>
<td>0.28327</td>
</tr>
</tbody>
</table>

Table 2 shows that there are twelve fuzzy rules generated by Wang’s method and there are forty nine fuzzy rules constructed by proposed method. The average forecasting errors of the prediction of the interest rate of BIC by Wang’s method and proposed method are 3.8568 % and 2.7813 % respectively.

Fig. 3. The prediction and true values of interest rate of BIC based on the Wang’s method using: (a) minimum inference engine; (b) product inference engine

From Table 2, forecasting the interest rate of BIC based on the Wang’s method using minimum inference engine has a good accuracy. Based on the proposed method, forecasting of the interest rate of BIC using product inference engine has a good accuracy. The MSE values and average forecasting errors based on the proposed method are smaller than those based on the Wang’s method. Figure 3 and Figure 4 show the true values and prediction values of the interest rate of BIC based on the Wang’s method and proposed method respectively.

Fig. 4. The prediction and true values of interest rate of BIC based on the proposed method using: (a) minimum inference engine; (b) product inference engine
5. Conclusions

In this paper, we have presented a new method for designing complete fuzzy rules from training data. The method uses the firing strength of rule to construct complete fuzzy rules. The resulted fuzzy rules can cover all values in the input spaces. The set of the fuzzy rules generated by the proposed method contains all fuzzy rules designed by the Wang’s method. In other word, the proposed method is generalization of the Wang’s method. We apply the proposed method to forecast the Indonesian inflation rate and interest rate of BIC. The result is that forecasting Indonesian inflation rate and interest rate of BIC using the proposed method has a higher accuracy than that using the Wang’s method. To increase the prediction accuracy, we can define more fuzzy sets in the input and output spaces but defining more fuzzy sets can imply complexity of computations. So determining the optimal number of fuzzy rules is important to get efficient computations. In the next works, we will design the optimal number of fuzzy rules.

6. Acknowledgement

The authors would like to thank DP2M DIKTI and LPPM Gadjah Mada University for the financial support of this research.

References

Journal of Quantitative Methods accepts the manuscripts in English. Three copies of the manuscript should be sent to:

Dr. Jamal I. Daoud
Department of Science, Faculty of Engineering
International Islamic University Malaysia
Email: Jamal58@iiu.edu.my

The manuscript that contains original research has a priority to be published. In addition to, survey or review about the new development on certain topics also be considered to be published. All manuscripts will be refereed before being accepted to be published. The manuscripts should be typed in MS word form A4 paper, single spacing, left and right margin 2.5 cm, top and bottom margin also 3 cm. Maximum pages for each manuscript are 20. It is also should contain the title (font 11, Time New Roman Capital letter and bold) which is simple and represent the topic, the name of author(s), the name of the institution, abstract, the main manuscript and references. The abstract should be typed with font 10, Time New Roman, and the section of the manuscript should be typed with font 10, Time New Roman and bold. The main manuscript part should be typed with font 10, Time New Roman.

STEP-STRESS TEST USING THE NON-HOMOGENEOUS POISSON PROCESS FOR REPAIRABLE SYSTEMS AND ITS APPLICATION IN AGRICULTURE

Xiao Yang¹ and Imad Khamis¹
¹Department of Mathematics, Southern Missouri State University
One University Plaza, Cape Girardeau, MO-63701

Abstract. Most of the available literature on step-stress tests is focused on non repairable systems with Weibull or exponential distribution. In this paper an alternative prospective is presented for step-stress tests on repairable systems, in which each experimental unit can be repaired and replaced into tests after a failure. The basic life distribution involved is a non-homogeneous Poisson Process. The cumulative Exposure Non-Homogeneous Poisson Process (CENHPP) Model will be proposed. Inferential procedure and optimum design will be discussed for simple step-stress accelerated test plans with fixed shape parameter. And several potential applications of CENHPP models in agriculture will be represented.

Keywords: Accredited life test; step-stress test; Non-homogeneous Poisson Process; repairable systems; maximum likelihood; optimum design

1. Introduction

References