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Chapter 6

Time-independent
Perturbation Theory







Problem

perturb the potential sligntly.

Suppose we have solved the (time -1ndependen t)

Schr odinger equation for some potential, now we

Difficulty & why

What

For this problem, we'd like to solve for

the new eigenfunctions and eigenvalues :
HY =E VY ,

But unless we are very lucky, we're

unlikely to be able to solve the Shrondi -

nger equation exactly, for this more co -

mplicated potential.

Perturbation theory is a sys -
tematic procedure for obtai -
ning approximate solutions

to the perturbed problem by
buiding on the known exact
solutions to the unperturbed

Case.




OUTLINE

- Non-degenerate perturbation theory

 Degenerate perturbation theory

 Some examples for application




Non-degenerate Perturbation Theory

e General formulation

* First-order theory

e Second-order energies




General formulation




The unperturbed case

Time -1ndependent Shrodinger equation :

H'¥’ =E’Y

Eigenvalues: [ r(l) Requirement:

W) )=0

nm

Eigenfunctions: \{J’S <‘P r?




Considering the perturbed case, we should solve
for the new eigenvalues and eigenfunctions.

We can write the Hamiltonian

;’f lti‘e new Systtem mto tlt‘e Additional
ollowing two partls | gnian
of the

j system

Hamiltonian of the
unperturbed system

H — H 0 + H;/ perturbed
N




Rewrite the new Hamiltonian as the sum of two terms

A small number ;later

/ : )

H — H | we will crank it up to
- O —— 1,and H will be the true,

[ exact Hamiltonian

Write the n' eigenfunction and eigenvalue as
power series in A as follows

P =+ ¥ + P+
E =E +AE +LE>+--

=)

The first-order The second-order
correction correction




Plugging the above
HII — E \P H,y, and E_ into the
1 n n time-independent
equation and

Collecting like
powers of A

H®' + AH®! + HW )+ 2(HY2 + HY! )+
= E°0° + A" + E'PO )+ P (E°W? + E'P! + E2¥° )+ - -

A is a device to keep track of the different orders




To lowest order:

HP’ =

E,¥,

To first order:

n

HY +HY =E'Y +E'¥’

To second order:

H ¥’

HY =E¥’

EY

And so on




First-Order Theory

e The first-order correction to the
energy

e The first-order correction to the

wave function




The first-order
correction to the energy




H'Y +HY' =E'¥! + £\ |Multiplying by ()

and integrating
. 3

(W) | HOW))+ (W) | HY) ) = E)(P) | W) + E) (W)

\P,fj}

And, S0, l

<\P,? ‘P,?>=1 ‘ E:L _ <\Pr? H’

H'¥))=E) (%) |\¥))

w))

(%,

Results: The first-order correction to the energy 1s the
expectation value of the perturbation in the unperturbed state.




Example
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Figure 6.2: Constant perturbation over Sl gioyre 6,3: Constant perturbation over
the whole well. half the well




Example. The unperturbed wave functions for the infinite square well are

(Equation 2.24)
2 ni
u IEp— — . .
Y x) = 4f 1 sm( ’ I).

Suppose first that we perturb the system by simply raising the “floor” of the well by a
constant amount ¥ (Flgure 6.2). Inthat case H' =V 0; and the first-order correction
to the energy of the n' state is

= (Y VoY) = Volw, 1¥,) = Vo,
The corrected energy levels, then, are E, = E° + Vy; they are simply lifted by the
amount V. Of course! The only surprising thing is that in this case the first-order
theory yields the exact answer. Evidently, for a constant perturbation ail the higher
corrections vanish.? If, on the other hand, the perturbation extends only halfway
across the well (Figure 6.3), then

2V V
E! = =2 sm2 (Ex) dx = —.
a Jo a 2

Inthis case every energy level is lifted by ¥ /2. That’s not the exact result, presumably.,
but it does seem reasonable as a first-order approximation.



The first-order correction
to the wave function




Rewrite | |H'Y +HY’ =E'¥Y + E'Y’

equation

=) (H°-E) ¥,=—(H'-E) ¥,

The unperturbed wave functi-

ons constitute a complete set

-

W=y Clge

n

m+*n

.-

Additional,
H'Y’ = E°P’

m#n

= > (E,—E)C"Y) =—(H —E) ¥,

Take the inner product with W'/ mm)

> (Ey-ENC (w0 ) = (¢

m#n

H/

W)+ E) (P

\y,;)}




If 1=n,weget E ; <\P,2H

wY)

(n) _
C. =

If 1#n,we get C". E)-E

‘ LPI:Z<‘P,2H"P:>‘PO

n 0 0 m
El’t _Em

m#n

Notice: although perturbation theory often
yields surprising by accurate energies, the
wave functions are notoriously poor.




Second-order energies




H'Y'+HY =E’Y’'+EVY +E’'¥’

~ [Take the inner product with ]

(| HOW )+ (W) | H)) = E) (W) W)+ E, () | W) )+ E; (W) | %))
<\110 HO‘PHZ> _ <HO‘{’f q1r12> _ E0<‘PO q12>4 The Hermiticity of H°
Meanwhile <‘PO ‘PO> _1. We could proceed to
AN ’ calculate the second-order
o \Pl> _ C(n) <‘PO ‘PO> correction to the function,
< A mZ;t;l m L the third-order correction
to the energy, and so on,
2 but in practice, the above
0 / 0 ’
j‘> ) |<\Pm H \Pn > results 1s ordinarily as high
En = Z 0 0 as it 1s useful to pursue this
m#n En — Em method.




Correction to the eigenvalue:

E'—E’

m+n

ey
En:En+Hm+n; Y
Correction to the eigenfunction:
(wolHwe)
Y=+ PO ...




Degenerate Perturbation Theory

e Two-ford degeneracy

* Higher-order degeneracy




Non-degenerate perturbation theory fail?

 In many cases, where two (or more) distinct
states share the same energy, non-degenerate
perturbation theory fail !

e Sometimes, two energy levels exists so near
that non-degenerate perturbation theory
cannot give us a satisfied answer.

S0, we must look for some other way to
handle the problem.




Two-ford degeneracy




In order to see how the method generalizes,
we begin with the twofold degeneracy

Suppose ,

HW) = E°Y)
H'Y =E"Y, ,
(%

“Lifting of a degeneracy by a || The perturbation will
paerturbation “break” the degeneracy




Any linear combination of the above states g \P 0 _ a\{l 0 + ﬂ\{I 0
a b

is still an eigenstate of HY,with the same eigenvalue E

H¥’ = E"P°

Essential problem: When we turn off the

perturbation, the “upper” state reduces down to one
linear combination of ‘Pf and ‘Pl? , and the “lower”
state reduce to some other linear combination, but
we don’t know a prior1 what these good linear
combination will be. For this reason we can’t even
calculate the first-order energy (equation 1) because
we don’t know what unperturbed states to use.




As before, we write H, E, y 1n the following form

H=H"+ A1H
E=E°"+ AE'+ A°E* + --- |,
Y =¥ '+ A9+ QY 2 4+ ..

Plug into the stationary equation ‘

To lowest order, HY® = E°Y°

To first order, | H°¥' + HY® = E'¥! + E'P?




HO\PI _I_H/LPO _ EO\PI _I_EI\PO iTake the inner J

8 product wi th ¥

(W) | HOP ) +(W) [ HP") = E° (W) | ')+ E' (W) | W)

H'Y =E°Y), Meanwhile, H° is

!

HY’ = E"Y) , Hermitian, the first

0 term on the left
<‘Pa b>:O ’ cancels the first
PO =¥’ + Y, term on the right

o) |H'|W! )+ p(W) |H’

b>:05E1




Results The “matrix

oW ‘|‘ﬁW _ 0(E1 elements” of H'
aa ab

-
W'). (i j = a.b)

Where, W, = <‘Pi°

Similarly, the inner product with ¥, yields

aWw,, IBW bb — IBE

A Eliminate W ,

24 WabWba - (E _Waa )(E _Wbb )J — O




If & 1s not zero, we can get the following equation

(E1)2 _El(Waa T Wbb) T (WaaWbb - WabWba) — O
. B

1
E, ZE[WM +W,, i\/(Waa -W,,)° +4

BEZN
The two roots
correspond to the
two perturbed
energies

Wab

o




How should we do in practice

Idea: It would be greatly to our advantage if

we could somehow guess the “good” states
right from the start.

1. Look around for some Hermitian operator
A that commutes with H' ;

2. Pick as your unperturbed states ones that
are simultaneously eigenfunctions of H°
and A ;

3. Use ordinary first-order perturbation theory.

If you can’t find such an operator, you’ll have to resort to
Equation 3, but in practice this is seldom necessary




Let A be a Hermitian operator Byassumption, [A, H '] =(,so
. ’ 0
that commutes with H It ¥, <\{,c? [ A H’]‘P,?> —0

and W, are eigenfunctions of A

— /g N0 0| £ A0
with distinct eigenvalues, — <LPa AHY, > _<\{Ia HAY,
AV = (¥ AW =W u# v, :<A\yo
Then W, = 0 (and hence ¥, and

;
)

H,‘Pl?> =(u-vW,,

H'Y) ) (W | H VY,

=(u-v <‘PO
P, are the "good" states to use in ('u ) ¢
perturbation theory). Butu#v,soW,, =0.QED

Higher-order degeneracy -}.




Higher-order degeneracy




E°=E’ , ¥°= Zakq}fk , Matrix equation

H¥'+ g9 = E'¢! + E'P? ‘ Zk:(Hl;k —E15k,k)ak =0

Secular equation
/ 1 . =
det|H [, —E'5,,| =0 ’

L Diagonalizes the perturbation H’

If you can think of an operator A that commutes with H',
and use the simultaneous eigenfunctions of A and H°, then
the W matrix will automatically be diagonal, and you
won’t have to fuss with solving the characteristic equation.




Example

Figure 6.5: The perturbation increases the Figure 6.6: Lifting of the degeneracy in
potential by an amount V) in the shaded sector. jilthe example (Equation 6.38).




Example. Consider the three-dimensional infinite cubical well (Problem 4.2):

0, il =xl=<alld<y<a andl <z < q; [6.29]

Fix., v = .
(x, y,2) >0 otherwise.

The stationary states are

Viantsor9= (2) s (27 s () (55) .t

] a

where n,, n,, and n; are positive integers. The corresponding allowed energies are

0 2h?

Rynt R T zmai

(n? + n:‘; + n?), [6.31)
Notice that the ground state (1) is nondegenerate; its energy is

21.2
0 <h

[6.32]

2ma?’

But the first excited state is (triply) degenerate:

Vo = VY112, ¥p = Y21, and ¥, = gy, [6.33]



all share the energy

HEhZ
E} =3—. [6.34]
ma
Now let’s introduce the perturbation
H — Vo, 1f[}1=-::.1lr: <afland0 < y <a/2; 6.35]
0, otherwise.

This raises the potential by an amount ¥ in one quarter of the box (see Figure 6.5).
The first-order correction to the ground state energy is given by Equation 6.9:

1 ! 2 y i . 2 T
Ey = (YnullH ' |Ynn) = (—) Vﬂ[ Sin (—I) dx
0

d a

aj/2 a 1
f sin” (Ey) cz'yf sin’ (f-z) dz = -V,
0 a 0 a 4

which 1s just what we would expect.

[6.36]



For the first excited state we need the full machinery of degenerate perturbation
theory. The first step is to construct the matrix W . The diagonal elements are the

same as for the ground state (except that the argument of one of the sines is doubled);
you can check for yourself that

|
W = Wiy = Wee = EVD

The off-diagonal elements are more interesting:
) 3 a2
Bl = (—) Vuf sin® (Ex) dx
a 0 a
f”ﬁ E: 4 WY i+, 4 @ (27 M+
SIn (uy) sin| —y | dy | sin|—z]|sin (—z) dz.
0 a a 0 a a



But the z integral is zero (as it will be also for W), so

Wap = Wae = 0.
Finally,
2N LRI . 2
Wy =1 - V.;.f sin (—x) sin | —x | dx
a 0 a a
e 2 it 16
[ sin(Zy)sin(Zo) v [ sin® () dz = 500
0 a a 0 a O
Thus

I
W=?(U 1 ﬁ:),
(00 st
where ¥k = (8/3m)° ~ 0.7205.

[6.37]



The characteristic equation for W (or rather, for 4W / V), which is easier to work
with) 18
(1—w) —«?(1 —w) =0,

and the eigenvalues are
wy =1 w=14k%17205 w3=1-k~0279.
To first order in A, then,

Eg + AV, /4,
E\(A) = { E} +A(1 +«)Vo/4, [6.38]
EV 4+ A(1 — k)Vo /4,

where EV is the (common) unperturbed energy (Equation 6.34). The perturbation
lifts the degeneracy, splitting E7 into three distinct energy levels (see Figure 6.6).
Notice that if we had naively applied nondegenerate perturbation theory to this prob-
lem, we would have concluded that the first-order correction (Equation 6.9) is the



same for all three states, and equal to ¥y/4—which is actually correct only for the

middle state.
Meanwhile, the “good” unperturbed states are linear combinations of the form

Y’ = ay, + BYs + ¥, [6.39

where the coefficients (@, 8, and y) form the eigenvectors of the matrix W:

(513)()--()

Forw=1lwegeta=1,=y =0;forw=1xkwegeta =0,8==1y =1/2
(I normalized them as I went along.) Thus the “good” states are*

Ya,
' = [ (Yp + ¥e)/V2, [6.40]
('\trb i wc)f{\/i



Some Examples For Application

* The fine structure of hydrogen
e The zeeman etfect

 Hyperfine splitting




The Fine Structure of Hydrogen

e The relativistic correction

* Spin-orbit coupling




an
o

'he simplest
amiltonian of

|

ne hydrogen

Replace m by the
reduced mass

Relativistic correction

Spin-orbit coupling

=)

Quantization of the Coulomb field

The magnetic interaction

between the dipole moments of j‘> _
the electron and the proton




Hierarchy of correction to the Bohr
energies of hydrogen

Bohr energies: of order a'mc
Fine structure: of order o'mc
[Lam 1ft : of order amc

Hyperfine of order (%1 jof‘mc2
P

{An application of time—independent}

perturbation theory




The relativistic correction




Classical formula

2 2 2
H _ h Vz € 1 T _ p
2m dre, r 7 m
N
Represent The relativistic formula

kinetic energy

I = me” mc’
: The total Xf\/l—(%)%

relativistic

energy

L The rest energy




Express T 1n terms of the relativistic momentum

The relativistic momentum: p =

=

. .
m’v’c’ +m’c* [ ( )Z}
p’c’+m’ct = (/)2 / T + mc )2
. : The nonrelativistic
T = \/pzc2 +m’c* —mc’ limit p <<mc

3.2

 2m 8m’c




2 4

7P P

N 2m  8m’c’

In first-order perturbation theory, the correction to E_ 1s given
by the expectation value of H' in the unperturbed state

1

3
Sm’c

‘Erlz_ 12<W

3
Sm’c

pv)=——= (V| pV)

m

) E-- 12[E2—2E<V>+<V2>]

2mc

And, [fz +V]w=Ew = Py =2m(E-V)y




El

r

1

2
2mc

E’ +2E{

2
€

4re

)

2
(4
_|_
> (47250

I;

1

2

>

Where E_ 1s the Bohr energy of the state in question

1 1 1 1
2 Bl
r n-a r (l+%)n3a2
— l —
2 2 )2
E=t |pyop| | L]
2mc dre, )n"a |\ 47e, l+ / )n?’ 2




lPlugglngl

E'=— E2+2E( e 1L [<
2mc’ i 4re, nza 47e, l+ / )n?’ :
E: | 4 _
E, = 2mnc2 [ ri =
o




Spin-Orbit Coupling

The orbiting positive charge
sets up a magnetic field B
1n the electron frame, which
exerts a torque on the
spinning electron, tending
to align 1ts magnetic
moment (W) along the
direction of the field.

Hydrogen atom, from the H ——— ]:l . B

electron’s perspective.




The Magnetic Field of the Proton

According to the Biot - Savart law : B =

The charge of proton

The period of the orbit

::> £ = : ez > L
drme, mec“r




The Magnetic Dipole Moment of the Electron

Classical

electrodynamics

A ring of charge, rotating about its axis T




g )
\ 2m ) o

However, as it turns

out, the electron’s e
magnetic momentis| B —= —— S
twice the classical € m
answer

The “extra” factor of 2 was explained by Dirac 1n his
relativistic theory of the electron. For a related
discussion, see V.Namias,Am.J.Phys.,57,171(1989).




The Spin-Obit Interaction

B_ 1 e I
Are, mc’r’ " 1
H:(47Z'8 jm262r3 5L
po=—"-8§ 0
m

We did the analysis in the rest frame of
the electron, but that's not an inertial
system——it accelerates as the electron

orbits around the nucleus.

S O L U T I O N

Make an appropriate kinematic correction,
known as the Thomas precession.




The Spin-Obit Interaction

The modified

gyromagnetic ratio

for the electron

Exactly

another

cancel one

the Thomas
precession
factor

\DISREGARD’

Sately, on the basis of a naive classical model

/

62 \

/
HSO -

\871'50 y,

1

2 2
m c r

S L




[H 0 L] =+ () The spin and orbaital
‘ angular momenta

[H ;0 : S] %0 are not conserved

Put it another way

‘ The total angular momentum J =L +8S
[HgoaLz]:O [H;Oasz]:()

L

7,8, J%,J _ are conserved, and the eigenstates of these

quantities are good states to use in perturbation theory.




J=L+S ™ j2=[>+5>+2L-S
= L-S:; Ja_g2_g2 Meanwhile,

2( ) ’ €2 1

B HSO:(Sﬂ.g jmzczrss'L
The eigenvalue sof L -S : 0

% G —1(41)

s(s+1)]

_ 1
>_ l(l+%Xl+1)n3a3

h/[] (+1)—-1(+1) /]

E. =
Y (871'80ij

l+/)(l+1

Express in
‘

1 —
Ego =

E’

n

[]+1 l+1 /]

'

mc

7

l+/)(l+1




Fine structure




The relativistic correction The spin-orbit coupling

gl _Er | _4n + o < B2 n[j(j+1)—l(l+1)—%h
r T a SO — ’ ‘
2mc* _l+% _ mc’ | l(l+%Xl+1)
. , Combine )
The correction to pro Er |5 _4n R
the Bohr formula 2me* Jj+ % Bohr
formula
1 | = _ py

The complete fine- | _ 13.6ev| 052[ n 3}
N 2 2 | . T
structure formula VS

*Fine structure breaks the degeneracy in /

*The energies are determined by 71 and J




The Fine Structure of Hydrogen

L i= 72
el = G %::::::ﬁi—f" j=5/2
-
~j= 12
=3 YE::?:::""_J_ /= 82
s
HH“‘H-\.
j=1s2
n=2 a---ees [ = 372
------ j= 12
------ J= 12
=0 iI=1 =2 I=3
(S) (F) 0) (~)

Energy levels of hydrogen, including fine structure (not to scale)



The Zeeman Effect

e Weak-field zeeman effect

e Strong-field zeeman etfect

e Intermediate-field zeeman effect




General discussion




Consider an atom placed in a
uniform external magnetic field B,

For a single electron
What

ext

I\

|
& .
Associated with

orbital motion

Associated with
electron spin

How

. !

2m

H; :i(L_I_ZS).Bext




New phenomenon  Y4ESuknigsisEs

The energy levels are shift when an atom 1s
placed 1n a uniform external magnetic tield

Depend on the strength of the external
field in comparison with the internal field
that gives rise to spin-orbit coupling

Weak-tield || Intermediate || Strong-field

1 1 1

<<B. . || Comparable | B, <<B,,

B

ext ext




Weak-tield Zeeman Effect

B

<<B. .

eXxt

Fine structure
dominates

-13.6eV (1 + u?/4)

Weak-field Zeeman splitting of the HZ aS a Small

ground state; the upper line (m;=1/2)

has slope 1, the lower line (m;=-1/2 ) perturb ation

has slope -1




[H 0 L] =+ () The spin and orbaital
‘ angular momenta

[H ;0 : S] %0 are not conserved

Put it another way

‘ The total angular momentum J =L +8S
[H;O’LZ]:O [H;O’SZ]:O

&

) S A | _ are conserved, and the eigenstates of these

quantities are good states to use in perturbation theory.




n,l, j and m are the " good" quantum numbers

The zeeman correction to the energy

=)

nljm j>= ﬁBext -<L + ZS>

The expectation ‘)
O

E, =<nljmj‘H;

S

value of S

In the presence of spin-orbit coupling,
L and S are not separately conserved;
they precess about the fixed total

J angular momentum, J.

= s, -89,

J




L=J-S= s1=102+5-2)=""[jG+)+s(s+)-10+1]

Meanwhile, <L+ZS>:<(1+ (SJ';' )jJ> / The h

_(S-J) = G+ =1l +1)+3/ lande
Save = J’ J - 1+](] 1;j(;+1;) /4 J) g—factor,

8]

Choose the z-axis to lie along B,

. Bohr
‘ EZ — ﬂBg]Bextmj magneton

\ =
\—

Where, 4, = < =5.788 x 10 A

2m




Strong-tield Zeeman Eftect

Energy
Levels

Transitions

I Spectra

No Magnetic Field Magnetic Field

The feeman Effect

From csepl10.phys.utk.edu/.../lisht/zeeman-split.html




Strong-tield Zeeman Effect

B

>>B.

ext

The zeeman
effect dominates

Fine structure
as the

TSP _ perturbation




Strong-field Zeeman Effect

n,l,m, and m_are now the "good" quantum numbers

o . %
Choose the z-axis to lie along B, [meof!

The zeeman Hamiltonian The "unperturbe d" energies

H; =2iB€xt(Lz +2'SZ) E — _136ev +luBBext (ml +2ms)
m

nm;m 2

n

The fine structure correction:
E, =(nlmm |H +H]
T

H' : The same as before |[(S-J)= <Sx><Lx>+<Sy><Ly>+<SZ><LZ> = h’mym,

— B

. 136eV L |3 | 1l+1)-
n 4n l+/)(l+1




Intermediate-field Zeeman Effect

Neither H', nor
H'., dominates

Treat them on
an equal footing

As perturbation
to Bohr
Hamiltonian




Intermediate-field Zeeman Effect

The case : n =2; The basis : the

states character1 zed by [, j,and m

Using the Clebsch- ‘
Gordan coefficients

v
. = 73> |1—1>| )

3

2

3

2

s =130 = Y2 o)+ D+,

1_1_—
22
3

2
1 =

2

[ = 04

\/7|10>| )+ \/73|11>|77
+)= Fll 1>| >+\%I10>I;—71

& & @ | @




Matrix of H'




Energy levels for the n=2 states of hydrogen,
with fine structure and zeeman splitting

e, =E,-5y+p
e,=E,-5y-p
E.,=E,—-y+2p0
€, = E2_7_216
e, = E, -3y + )2+ 4y  + (2/3)B + B> /4
E.=FE, -3y + ,6’/2—\/472+(2/3)7,3 +,32/4
£, = E2—37—,6’/2+\/472—(2/3)7’,5 +B%/4
Eg = E2—37—ﬂ/2—\/472—(2/3)7ﬁ + 3% /4




Hypertine splitting




Brief introduction to proton

Made by Arpad Horvath.
commons.wikimedia.org/wiki/
Image:Quark_struct...

The quark structure of
the proton. There are
two up quark 1n 1t and
one down quark. The
strong force 1S
mediated by gluons
(wavey). The strong
force has three types
of charges, the so
called red, green and
the blue. cut 1s a
douche bagg



Brief introduction to proton

The proton'itself constitutes a magnetic dipole,
smaller than the electron’s

According to classical electrodynamics, a dipole
LL sets up a magnetic field.

B = 'u03[3(11-r)r—11]: 2Ho no°(r)
4 7or 3

For a related discussion, see D.J.Griffiths,Am.J.Phys.,50,698(1982).




The electron near proton

The Hamiltonian of the electron,due to
the proton’s magnetic dipole moment

H=-p-B )

’r ﬂ0g82 B(Sp -I‘)(Se -I‘)—Sp 'SeJ luoge2
87om m, r 3m,m,

S, -S,8%(r)

According to perturbation theory, we can
get the first-order correction to the energy

2

B = ;Uoge2 <3(Sp'r)(se'r)_sp'se>+ :uoge2

| =
/ 87am ,m, r’ 3m, m,

(S,-S. )7 ()




For the ground state hydrogen

The wave function 1s
spherically symmetrical

‘ <3(Sp xS, '31")—Sp ‘Se>=o

: 2 1 Spin-spin
U,ge”
‘ E, = : 3 <S p °Se>

hf




Spin-spin coupling

The individual spin angular momenta are no longer conserved;
the “good” states are eigenvectors of the total spin.

— 1
S=S5,+S, m s, s, (S ~52-5?)
The electron and proton ‘ 2 _ 2 ( / )h
both have spin 1/2 . e P

In the triplet state, S = 2h°

In the singlet state, S?* =0.

r 1 i .
‘ i 4 g1’ %+/,(tr1plet),
hf 2 2 4

3m,m;c7a” |- %, (singlet).




Effect of spin-spin coupling

_Triplet Hypertine
Unperturbed Splitting 1n
~ || the ground
. state of
Singlet hydrogen

e[ifting the triplet configuration

*Depressing the singlet configuration




The energy gap as a result of spin-spin coupling

2
AE=— 8" 58810y
3m,m;c a
) V:%=142()MHZ

Corresponding wavelength : % =21cm

Fall in the microwave region

This famous “21-centimeter line” is among 21-

the most pervasive and ubiquitous forms of || centimeter
radiation in the universe. line




