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Chapter 6

Time-independent Time-independent 

Perturbation Theory
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OUTLINE

• Non-degenerate perturbation theory

• Degenerate perturbation theory• Degenerate perturbation theory

• Some examples for application



Non-degenerate Perturbation Theory

• General formulation

• First-order theory• First-order theory

• Second-order energies



General formulation



The unperturbed case
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Considering the perturbed case, we should solve 

for the new eigenvalues and eigenfunctions.

We can write the Hamiltonian

of the new system into the

f o l l o w i n g t w o p a r t s
Additional 

Hamiltonian 

HHH ′+= 0

Hamiltonian of the 

unperturbed system

of the 

perturbed 

system



Rewrite the new Hamiltonian as the sum of two terms

HHH ′+= λ0

Write the nth eigenfunction and eigenvalue as 

power series in λ as follows

A small number ;later   
we will crank it up to

1,and H will be the true, 
exact Hamiltonian
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The first-order 

correction

The second-order 

correction
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time-independent 
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Collecting like 

powers of λ
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( ) ( )
( ) ( ) L

L

+Ψ+Ψ+Ψ+Ψ+Ψ+Ψ=

+Ψ′+Ψ+Ψ′+Ψ+Ψ

0211202011000

12

n

021

n

00

n

0

nnnnnnnnnnnn

n

EEEEEE

HHHHH

λλ

λλ



To lowest order:

To first order:
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First-Order Theory

• The first-order correction to the 

energy

• The first-order correction to the 

wave function



The first-order 

correction to the energycorrection to the energy
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Results: The first-order correction to the energy is the 

expectation value of the perturbation in the unperturbed state.



Example





The first-order correction 

to the wave functionto the wave function



Rewrite 

equation
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Notice: although perturbation theory often

yields surprising by accurate energies, the

wave functions are notoriously poor.



Second-order energies
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We could proceed to 

calculate the second-order 

correction to the function, 

the third-order correction 

to the energy, and so on, 

but in practice, the above 

results is ordinarily as high 

as it is useful to pursue this 

method. 
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( )1
00

2
00

0
L+

−

Ψ′Ψ
+′+= ∑

≠nm mn

nm

nnnn
EE

H
HEE

Correction to the eigenvalue:

( )20

00

00

0 ∑
≠

+Ψ
−

Ψ′Ψ
+Ψ=Ψ

nm

m

mn

nm

nn
EE

H
L

Correction to the eigenfunction:



Degenerate Perturbation Theory

• Two-ford degeneracy

• Higher-order degeneracy



Non-degenerate perturbation theory fail?

• In many cases, where two (or more) distinct

states share the same energy, non-degenerate

p e r t u r b a t i o n t h e o r y f a i l !

• Sometimes, two energy levels exists so near• Sometimes, two energy levels exists so near

that non-degenerate perturbation theory

cannot g ive us a sa t i s f i ed answer .

So, we must look for some other way to 

handle the problem.



Two-ford degeneracy



In order to see how the method generalizes,  
we begin with the twofold degeneracy
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Any linear combination of the above states

is still an eigenstate of H0,with the same eigenvalue E0

Essential problem: When we turn off the

perturbation, the “upper” state reduces down to oneperturbation, the “upper” state reduces down to one

linear combination of and , and the “lower”

state reduce to some other linear combination, but

we don’t know a priori what these good linear

combination will be. For this reason we can’t even

calculate the first-order energy (equation 1) because

we don’t know what unperturbed states to use.
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As before, we write H, E, ψ in the following form

Plug into the stationary equation
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How should we do in practice

Idea: It would be greatly to our advantage if 

we could somehow guess the “good” states 

right from the start.

M

1. Look around for some Hermitian operator        

A that commutes with H' ;
M

O

R

A

L

A that commutes with H' ;

2. Pick as your unperturbed states ones that 

are simultaneously eigenfunctions of H0

and A ;

3. Use ordinary first-order perturbation theory.

If you can’t find such an operator, you’ll have to resort to 

Equation 3, but in practice this is seldom necessary
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Higher-order degeneracy
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Secular equation
Get ak , 

then 

get ψ0
Get E'
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If you can think of an operator A that commutes with H',

and use the simultaneous eigenfunctions of A and H0, then

the W matrix will automatically be diagonal, and you

won’t have to fuss with solving the characteristic equation.
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Some Examples For Application

• The fine structure of hydrogen

• The zeeman effect• The zeeman effect

• Hyperfine splitting



The Fine Structure of Hydrogen

• The relativistic correction

• Spin-orbit coupling
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Correct for the motion 

of the nucleus

The simplest 
Hamiltonian of 
the hydrogen

Replace m by the 

reduced mass

Relativistic correction

Fine structure

Lamb shift

Hyperfine structure

Relativistic correction

Spin-orbit coupling

Quantization of the Coulomb field

The magnet ic in terac t ion

between the dipole moments of

the electron and the proton



Hierarchy of correction to the Bohr

e n e r g i e s o f h y d r o g e n
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An application of time-independent 

perturbation theory



The relativistic correction
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Express T in terms of the relativistic momentum
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The classical result

The lowest-order 

relativistic contribution to 

the Hamiltonian

In first-order perturbation theory, the correction to En is given

by the expectation value of H' in the unperturbed state
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In the case of hydrogen
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Where En is the Bohr energy of the state in question
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Spin-Orbit Coupling

The orbiting positive charge

sets up a magnetic field B

in the electron frame, which

exerts a torque on the

spinning electron, tending

t o a l i g n i t s mag n e t i c

ΒΒΒΒμμμμ⋅−=H

t o a l i g n i t s mag n e t i c

moment (µµµµµµµµ) a long the

direct ion of the fie ld .

Hydrogen atom, from the 

electron’s perspective.



The Magnetic Field of the Proton

2r
  :lawSavart -Biot  the toAccording

I
B 0

µ
=

T

e
I =current   effectiveAn 

The charge of proton

The period of the orbit

L
32

rmc

e

0000

4444

1111

ΒΒΒΒ

πε
=

T

mr
rmL

22
  :electron  theof momentumangular  orbital The

π
υ ==

direction same in thepoint   and  ,Additional LB



The Magnetic Dipole Moment of the Electron
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However, as it turns 

out, the electron’s 

magnetic moment is 
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twice the classical 
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The “extra” factor of 2 was explained by Dirac in his 

relativistic theory of the electron. For a related 

discussion, see V.Namias,Am.J.Phys.,57,171(1989).



The Spin-Obit Interaction
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the electron, but that’s not an inertial
system——it accelerates as the electron

o r b i t s a r o u n d t h e n u c l e u s .

S O L U T I O N

Make an appropriate kinematic correction,

known as the Thomas precession .



The Spin-Obit Interaction

The modified 

gyromagnetic ratio 

for the electron

the Thomas 

precession 

factor
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cancel one 

another
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Safely, on the basis of a naive classical model
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Fine structure
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The Fine Structure of Hydrogen

Energy levels of hydrogen, including fine structure (not to scale)



The Zeeman Effect

• Weak-field zeeman effect

• Strong-field zeeman effect• Strong-field zeeman effect

• Intermediate-field zeeman effect



General discussion



Consider an atom placed in a 

uniform external magnetic field Bext
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Zeeman EffectNew phenomenon

The energy levels are shift when an atom is 

placed in a uniform external magnetic field

H Depend on the strength of the external
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Weak-field Zeeman Effect

Bext<<Bint

Fine structure Fine structure 

dominates

HZ as a small 

perturbation

Weak-field Zeeman splitting of the 

ground state; the upper line (mj=1/2) 

has slope 1, the lower line (mi=-1/2 ) 

has slope -1
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L and S are not separately conserved; 

they precess about the fixed total 

angular momentum, J.
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Strong-field Zeeman Effect

From csep10.phys.utk.edu/.../light/zeeman-split.html



Strong-field Zeeman Effect

Bext>>Bint

The zeeman 

effect dominateseffect dominates

Fine structure 

as the 

perturbationThe splitting of spectrum



Strong-field Zeeman Effect
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Intermediate-field Zeeman Effect

Neither H'Z nor 

H'fs dominates

Treat them on 

an equal footing

As perturbation 

to Bohr 

Hamiltonian fsHHH Z
′+′=′



Intermediate-field Zeeman Effect
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Energy levels for the n=2 states of hydrogen,

with fine structure and zeeman splitting
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Hyperfine splitting



Brief introduction to proton

The quark structure of

the proton. There are

two up quark in it and

one down quark. The

s t r o n g f o r c e i s

mediated by gluons

Made by Arpad Horvath. 

commons.wikimedia.org/wiki/

Image:Quark_struct...

mediated by gluons

(wavey). The strong

force has three types

of charges, the so

called red, green and

the blue. cut is a

d o u c h e b a g g



The proton itself constitutes a magnetic dipole, 

smaller than the electron’s

Brief introduction to proton
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According to classical electrodynamics, a dipole 

µµµµ sets up a magnetic field.

For a related discussion, see D.J.Griffiths,Am.J.Phys.,50,698(1982).



The electron near proton
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The Hamiltonian of the electron,due to

the proton’s magnetic dipole moment
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According to perturbation theory, we can 

get the first-order correction to the energy 



For the ground state hydrogen
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Spin-spin coupling

The individual spin angular momenta are no longer conserved;

the “good” states are eigenvectors of the total spin.

The electron and proton

both have spin 1/2 .
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Effect of spin-spin coupling

Hyperfine 

splitting in 

the ground 

state of 

•Lifting the triplet configuration

•Depressing the singlet configuration

state of 

hydrogen
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The energy gap as a result of spin-spin coupling

The frequency of the 

photon emitted in a 

transition from the 

triplet to the singlet 

state
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21-

centimeter 

line

This famous “21-centimeter line” is among 

the most pervasive and ubiquitous forms of 

radiation in the universe.
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