Lecture 3

- Need for new theory
- Stern-Gerlach Experiments
 - Some doubts
- Analogy with mathematics of light
- Feynman’s double slit thought experiment
Three empirical laws
To explain one physical phenomenon

Radiation is emitted in Quantas of energy

Radiation sometimes behaves as

- Particles
- Waves

Radiation is absorbed in Quantas of energy

Radiation is quantum of energy

- We are formulating a new theory!
- Radiation sometimes behaves as
 - Particles
 - Waves
- Same is true for Matter
Thought Experiments

- Feyman’s logical tightrope?
- We have given up asking whether the electron is a particle or a wave
- What we demand from our theory is that given an experiment we must be able to tell whether it will behave as a particle or a wave.
- We need to develop the Mathematics which the language of TRUTH which we all seek
- What kind of Language we seek is the motivation right now.
Stern-Gerlach Experiment

Collimator Slits

Inhomogeneous Magnetic Field

Oven containing Ag atoms

Nature behaves this way

Classically one would expect this

detector
Stern-Gerlach Experiment (contd)

- One can say it is an apparatus which measures the z component of $\mu \Rightarrow S_z$

- If atoms randomly oriented
 - No preferred direction for the orientation of μ
 - Classically spinning object $\Rightarrow \mu_z$ will take all possible values between μ & -μ

- Experimentally we observe two distinct blobs

- Original silver beam into 2 distinct component
What have we learnt from the experiment

- Two possible values of the Z component of S observed S_Z^UP & S_Z^down

- Refer to them as S_Z^+ & S_Z^- ⇒ Multiples of some fundamental constants, turns out to be $+\frac{\hbar}{2}$ & $-\frac{\hbar}{2}$

- Spin is quantised

- Nothing is sacred about the z direction, if our apparatus was in x direction we would have observed S_x^+ & S_x^- instead
Thought Experiments start

Source → SG \hat{Z} → SG \hat{Z} → SG \hat{Z} → Z$^+$

Source → SG \hat{Z} → SG \hat{X} → SG \hat{Z} → Z$^+$, Z$^-$
Thought Experiment continues

- Silver atoms were oriented in all possible directions.
- The Stern-Gerlach Apparatus which is a measuring device puts those atoms which were in all possible states in either one of the two states specific to the Apparatus.
- No matter how many measurements we make to measure S_z in z direction we put, there is only one beam coming out.
- Once the SG App. put it into one of the states repeated measurements OF THE SAME KIND did not disturb the system.
Conclusions from Coupled experiment

- Measurements disturb a quantum system in an essential way.
- Measurements put the QM System in one of the special states associated with that measurement.
- Any further measurement of the same variable does not change the state of the system.
- Measurement of another variable may disturb the system and put it in one of its special states.
Complete Departure from Classical Physics

- Measurement of S_x destroys the information about S_z
 - We can never measure S_x & S_z together
 - Incompatible measurements

- How do you measure angular momentum of a spinning top, $L = I\omega$
 - Measure ω_x, ω_y, ω_z
 - No difficulty in specifying L_x, L_y, L_z
Consider a monochromatic light wave propagating in Z direction & it is polarised in x direction

\[E = E_0 \hat{x} \cos(\omega t) \]

Similarly linearly polarised light in y direction is represented by

\[E = E_0 \hat{y} \cos(\omega t) \]

A filter which polarises light in the x direction is called an X filter and one which polarises light in y direction is called a Y filter

An X filter becomes a Y filter when rotated by 90°
An Experiment with Light

- The selection of \(x' \) filter destroyed the information about the previous state of polarisation of light
- Quite analogous to situation earlier
- Carry the analogy further
 - \(S_z \pm x \) & \(y \) polarised light
 - \(S_x \pm x' \) & \(y' \) polarised light
Mathematics of Polarisation

\[E_0 \hat{x}' \cos(kz - \omega t) = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} \sin(kz - \omega t) \right] \]

\[E_0 \hat{y}' \cos(kz - \omega t) = E_0 \left[-\frac{1}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} \sin(kz - \omega t) \right] \]
Mathematics of Polarisation

- In the triple filter arrangement
 - **First Filter** An x polarised beam – linear combination of x` & y` polarised beam
 - An x polarised beam – linear combination of x` & y` polarised beam
 - **Second Filter**– Selects x` polarised beam
 - An x` polarised beam – linear combination of x & y polarised beam
 - **Third Filter**– Selects y polarised beam

- This is quite similar to the sequential Stern-Gerlach Experiment
 - We represent the spin state of silver atom by some kind of vector in some abstract space. **NOT THE USUAL VECTOR SPACE**
The Analogy

- In case of light x and y was my basis
 - I could expand x` in terms of x and y…
- Suppose now I want to describe the SG apparatus
 - I could use two vectors \(|S_z^+\rangle\) and \(|S_z^-\rangle\)
 - Notice I am using the hat on the side
 - Then \(|S_x^+\rangle = \frac{1}{\sqrt{2}} \left[|S_z^+\rangle + |S_z^-\rangle \right]\)
 - \(|S_y^-\rangle = \frac{1}{\sqrt{2}} \left[|S_z^+\rangle - |S_z^-\rangle \right]\)
- Nothing sacred about z or x direction
 - What about y Direction?
 - \(S_y^+\) & \(S_y^-\)
 - They have to be independent of \(|S_x^+\rangle\) and \(|S_y^-\rangle\)
 - Basis is of two vectors
Analogy further

- Circularly polarised light Now
 - When we pass it thru a x filter only x component goes thru
 - When we pass it thru a y filter only y component goes thru
- Circularly polarised light different from linearly polarised light along x` and y`
- Mathematically -- circularly polarised light

 \[\text{y polarised component is } 90^\circ \text{ out of phase with x component} \]

More elegant to use complex notation by introducing \(\varepsilon \)

\[
\bar{E} = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} \cos(kz - \omega t + \frac{\pi}{2}) \right]
\]

\[\text{Re}(\varepsilon) = \frac{E}{E_0} \]

\[
\bar{E} = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} e^{i(kz - \omega t)} + \frac{\text{i}}{\sqrt{2}} \hat{y} e^{i(kz - \omega t)} \right]
\]
Analogy with circularly polarised light

- Now we can represent S_y^+ and S_y^-
- Thus $|S_y^+\rangle = 1/\sqrt{2} \left[|S_z^+\rangle + i |S_z^-\rangle \right]$
 \[|S_y^-\rangle = 1/\sqrt{2} \left[|S_z^+\rangle - i |S_z^-\rangle \right] \]

- We can describe the SG experiment using the language of vectors
- However no connection with ordinary vectors having magnitude and direction
- That the vector space must be complex
Feynman’s thought experiments