DIKTAT KULIAH

FISIOLOGI TUMBUHAN LANJUT

OLEH:
Dr. Djukri, MS

JURUSAN PENDIDIKAN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI YOGYAKARTA

2004
RANCANGAN KEGIATAN BELAJAR MENGAJAR

Mata Kuliah: Fisiologi Tumbuhan Lanjut
SKS: Teori (1sk), Paktikum (1sk)
Semester: Genap

<table>
<thead>
<tr>
<th>No</th>
<th>Pokok Bahasan</th>
<th>Sub Pokok Bahasan</th>
<th>Tatap muka ke*</th>
<th>Keg. Belajar Mengajar</th>
<th>Sumber Bacaan</th>
</tr>
</thead>
</table>
| 1 | Analisis pertumbuhan tanaman | 1. Konsep pertumbuhan
a. Pengamatan pertumbuhan
b. Pertumbuhan dan perkembangan
c. Perbanyak protoplasma
d. Perbanyak sel
e. Pertambahan bobot kering
2. Konsep analisis pertumbuhan
a. Pertumbuhan organisme seluler
b. Laju pertumbuhan relatif
c. Indeks efisiensi
d. Pengukuran luas daun
 Methode kertas millimeter
 Methode Gravimetri
 Methode panjang kali lebar | I
 II
 III
 IV | - Kuliah
 - Diskusi
 - Praktikum
 - Tanya jawab
 - Pembuatan laporan
 - Praktikum | Periksa daftar pustaka |
| 2 | Sistem transportasi | 1. Struktur dan komposisi membran sel
2. Angkutan hara menembus membran
3. Sistem kompartemenasi
4. Penyerapan hara oleh akar
5. Interaksi antar ion
6. Status hara pada larutan luar dan dalam tanaman
7. Angkutan ion dalam xilem
8. Penuaan asimilat ke dalam floem
9. Mekanisme transportasi dalam floem
10. Pembongkaran floem dan penyimpanan sukrose | V
 VI
 VII
 VIII | - Kuliah
 - Diskusi
 - Praktikum
 - Tanya jawab
 - Pembuatan laporan | |
| 3 | Ujian sisipan | | | IX | |
| 4 | Hubungan source-sink dan hasil | 1. Konsep umum source dan sink
2. Pergeseran dalam hubungan source dan sink
3. Penuaan daun | X | - Kuliah
 - Diskusi
 - Tanya jawab
 - Pembuatan laporan |
<table>
<thead>
<tr>
<th>4. Peranan fitokrom dalam pengendalian hubungan source dan sink</th>
<th>XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Sitokinin</td>
<td>XII</td>
</tr>
<tr>
<td>6. Giberelin</td>
<td></td>
</tr>
<tr>
<td>7. Auxsin</td>
<td></td>
</tr>
<tr>
<td>8. Asam absisat</td>
<td></td>
</tr>
<tr>
<td>9. Etilen</td>
<td></td>
</tr>
<tr>
<td>10. Jasmonic acid (JA)</td>
<td></td>
</tr>
<tr>
<td>11. Keterbatasan source dan sink dalam mempengaruhi laju pertumbuhan dan produksi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Fisiologi stres lingkungan</th>
<th>1. Konsep stres dan strain</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Stres dan strain biologi</td>
<td>Stres dan strain biologi</td>
<td>Diskusi</td>
</tr>
<tr>
<td>3. Kerusakan akibat stres dan resistensi</td>
<td>Kerusakan akibat stres dan resistensi</td>
<td>Tanya jawab</td>
</tr>
<tr>
<td>5. Resistensi dan kerusakan terhadap stres individual</td>
<td>Resistensi dan kerusakan terhadap stres individual</td>
<td>Praktikum</td>
</tr>
<tr>
<td>6. Cekaman suhu tinggi</td>
<td>Cekaman suhu tinggi</td>
<td>Membuat laporan praktikum</td>
</tr>
<tr>
<td>7. Cekaman cahaya rendah</td>
<td>Cekaman cahaya rendah</td>
<td></td>
</tr>
<tr>
<td>8. Cekaman kekurangan air</td>
<td>Cekaman kekurangan air</td>
<td></td>
</tr>
<tr>
<td>9. Hubungan cekaman hara dan cekaman air</td>
<td>Hubungan cekaman hara dan cekaman air</td>
<td></td>
</tr>
<tr>
<td>10. Cekaman garam dan ion</td>
<td>Cekaman garam dan ion</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 6 Ujian akhir semester | XVI |</p>
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>ii</td>
</tr>
<tr>
<td>BAB I. ANALISIS PERTUMBUHAN</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Konsep Pertumbuhan</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Pengamatan Pertumbuhan</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Pertumbuhan dan Perkembangan</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Perbanyak Protoplasma</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Perbanyak Sel</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5 Pertambahan Bobot Kering</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Konsep Analisis Pertumbuhan</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Pertumbuhan Organisme Uniseluler</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Laju Pertumbuhan Relatif</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 Indeks Efisiensi</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Pengukuran Luas Daun</td>
<td>10</td>
</tr>
<tr>
<td>BAB II. SISTEM TRANSPORTASI</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Struktur dan Komposisi Membran Sel</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Angkutan Hara Menembus Membran</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Sistem Kompartementasi</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Penyerapan Hara oleh Akar</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Interaksi Antar Ion</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Status Hara pada Larutan Luar dan Dalam Tanaman</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Angkutan Ion Dalam Xilem</td>
<td>35</td>
</tr>
<tr>
<td>2.8 Penuaan Asimilat Kedalam Floem</td>
<td>36</td>
</tr>
<tr>
<td>BAB III. HUBUNGAN SOURCE-SINK DAN HASIL</td>
<td>42</td>
</tr>
<tr>
<td>3.1 Konsep Umum</td>
<td>42</td>
</tr>
<tr>
<td>3.2 Pergeseran Hubungan Sumber dan Wadah</td>
<td>43</td>
</tr>
<tr>
<td>3.3 Penuaan Daun</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Peranan Fito hormon dalam Hubungannya Sumber dan Wadah</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Fito hormon dan Hubungannya dengan Kegiatan Wadah</td>
<td>49</td>
</tr>
<tr>
<td>3.6 Keterbatasan Sumber dan Wadah dalam Mempengaruhi Laju Pertumbuhan dan Produksi</td>
<td>50</td>
</tr>
<tr>
<td>BAB IV. FISIOLOGI STRES LINGKUNGAN</td>
<td>57</td>
</tr>
<tr>
<td>4.1 Konsep Stres dan Strain</td>
<td>57</td>
</tr>
<tr>
<td>4.2 Stres dan Strain Biologi</td>
<td>58</td>
</tr>
<tr>
<td>4.3 Kerusakan Stres dan Resistensi</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Jenis-jenis Hambatan (Resistensi)</td>
<td>62</td>
</tr>
<tr>
<td>4.5 Resistensi dan Kerusakan terhadap Stres Individual</td>
<td>64</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>75</td>
</tr>
</tbody>
</table>