Abstract Algebra

4th meeting

Materials: subring and its examples

Motivation:
1. \(\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C} \) with ordinary operations additive (+) and multiplicative (\(\cdot \)) are ring and \(\mathbb{Z} \subset \mathbb{Q}, \mathbb{Z} \subset \mathbb{R}, \mathbb{Z} \subset \mathbb{C}, \mathbb{Q} \subset \mathbb{R}, \mathbb{Q} \subset \mathbb{C}, \mathbb{R} \subset \mathbb{C} \).

2. \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) with additive (+) and multiplicative (\(\times \)) operations on matrix is ring.

3. \(N = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \) with additive (+) and multiplicative (\(\times \)) operations on matrix is ring.

4. \(K = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \) with additive (+) and multiplicative (\(\times \)) operations on matrix is ring.

We know that \(K \subset N \subset M \).

From this fact, the concept of subring of ring is defined as follows:

Definition 1: Let \((R, +, \cdot)\) be a ring, \(S \neq \emptyset \) and \(S \subset R \). \(S \) is called subring of \(R \) if \((S, +, \cdot)\) is also ring.

Examples:
1. \(\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C} \) with ordinary operations additive (+) and multiplicative (\(\cdot \)) are ring and \(\mathbb{Z} \subset \mathbb{Q}, \mathbb{Z} \subset \mathbb{R}, \mathbb{Z} \subset \mathbb{C}, \mathbb{Q} \subset \mathbb{R}, \mathbb{Q} \subset \mathbb{C}, \mathbb{R} \subset \mathbb{C} \). So we conclude that \(\mathbb{Z} \) is subring of \(\mathbb{R}, \mathbb{Q}, \) and \(\mathbb{C} \).

 Then, \(\mathbb{Q} \) is subring of \(\mathbb{R} \) and \(\mathbb{C} \). And \(\mathbb{R} \) is subring of \(\mathbb{C} \).

2. \(K \) is subring of \(N \) and \(M \). Then, \(N \) is subring of \(M \).

3. Let \(\mathbb{Z}_{15} \) be set of integer classes of modulo 15. Find all subring of \(\mathbb{Z}_{15} \)!

4. Let \(\mathbb{Z}_{7} \) be set of integer classes of modulo 7. Find all subrings of \(\mathbb{Z}_{7} \)!

Theorem 1: Let \((R, +, \cdot)\) be a ring, \(S \neq \emptyset \) and \(S \subset R \). \(S \) is called subring of \(R \) if and only if for every \(a, b \in S \) (i). \(a - b \in S \) (ii). \(ab \in S \)

Proof: (see sukirman, 2006, page: 36)

Theorem 2: If \(S \) and \(T \) are subrings of ring \(R \), then \(S \cap T \) is subring of \(R \).

Proof: (see sukirman, 2006, page: 42)

Let \(S \) and \(T \) be subrings of ring \(R \). Is \(S \cup T \) subring of \(R \)? explain.