Transition Elements

pranjoto utomo
Definition

- What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals.

Zn_{30}
Definition

• Zink is not transition elements
 – Zn → has fully filled d orbital
Electronic configuration

- charge (atomic number) \gg, stability of $(n-1)d \gg ns$

- ionization energy of $(n-1)d \gg ns$

- filled orbital energy of $(n-1)d \ll ns$

- electronic configuration writing
 $-(n-1)d \ ns \ not \ ns \ (n-1)d$
Electronic configuration

Electronic structures of the d block elements
Electronic configuration

- ^{21}Sc : [18Ar] 3d14s2
- ^{22}Ti : [18Ar] 3d24s2
- ^{23}V : [18Ar] 3d34s2
- ^{24}Cr : [18Ar] 3d54s1
- ^{25}Mn : [18Ar] 3d54s2
- ^{26}Fe : [18Ar] 3d64s2
- ^{27}Co : [18Ar] 3d74s2
- ^{28}Ni : [18Ar] 3d84s2
- ^{29}Cu : [18Ar] 3d104s1
- ^{30}Zn : [18Ar] 3d104s2
Several energy terms to think about

• The amount of energy needed to ionize the metal

• The amount of energy released when the compound formed (as lattice enthalpy in solids, or the hydration enthalpies of the ions in solution)
Several energy terms to think about

• Charged the ion >>, electrons to be removed >> ionization energy >>

• Charged the ion >>, energy to be released (as lattice enthalpy or the hydration enthalpy of the metal ion) >>
Several energy terms to think about

• The more energy released, the more stable the compound
Oxidation state

1. ^{21}Sc: $+1, +2, +3 \rightarrow +3$ is the most stable oxidation state

2. ^{22}Ti: $+1, +2, +3, +4 \rightarrow +4$ is the most stable oxidation state
Oxidation state

- Iron

- Iron has two common oxidation states (+2 and +3), for example, Fe$^{2+}$ or \([\text{Fe(H}_2\text{O)}_6]\)^{2+} and Fe$^{3+}$ or \([\text{Fe(H}_2\text{O)}_6]\)^{3+}

- It also has a less common +6 oxidation state in the ferrate(VI) ion, FeO$_4^{2-}$.
Manganese has a very wide range of oxidation states in its compounds. For example:

+2 (Mn^{2+}),
+3 (Mn_2O_3),
+4 (MnO_2),
+6 (MnO_4^{2-}),
+7 (MnO_4^{-})
The origin of magnetism

- Electron (as particle → mass) → spinning on its axis → magnetism → magnet elemental
The origin of magnetism

electron magnetism

dominant

rotation on its axis

revolution on its orbit

neglected
Diamagnetic

- All materials have a diamagnetic effect
 → masked by larger “para or ferro” magnetic term
- All electron are paired
- Atoms have no net magnetic moment (no applied field)
- The spinning electrons produce a magnetization (M) in the opposite direction to that of the applied field (applied field)
Diamagnetic

opposite direction to applied field

magnetic moment cancelled each other

not attracted by a magnetic filed

diamagnetic
Diamagnetic

• Magnetic moment alignment
 – Has no magnetic moment
Paramagnetic

- Permanent magnetism from the spinning of unpaired electron

\[\text{Paramagnetism} \approx \text{unpaired electron} \]
Paramagnetic

electronic configuration of central atom / cation

paramagnetism

influenced by ligand
Paramagnetic

The strength of ligands

I⁻ < Br⁻ < Cl⁻ < OH⁻ < H₂O
< NCS⁻ < NH₃ < en < CO < CN⁻
Paramagnetic

- Magnetic moment alignment
 - Randomly magnetic moment alignment
Paramagnetic vs. Diamagnetic

What is the magnetism of each compound below?

\[\text{[NiCl}_4\text{]}^{2-} \quad ? \quad \text{[Ni(CN)}_4\text{]}^{2-} \]
Paramagnetic vs. Diamagnetic

- $[\text{NiCl}_4]^2-$:
 - paramagnetic
 - sp^3
 - tetrahedral
- $[\text{Ni(CN)}_4]^2-$
 - diamagnetic
 - dsp^2
 - square planar
Ferromagnetic (super magnet)

– Atoms are arranged in a lattice and the atomic magnetic moments can interact to align parallel to each other.

– Only Fe, Co and Ni are ferromagnetic at and above room temperature.
Ferromagnetic (super magnet)

- As ferromagnetic materials are heated or vibrated
 - alignment of the atomic magnetic moments decreases
 - saturation magnetization also decreases
 - paramagnetic
Ferromagnetic (super magnet)

– Curie temperature, TC
 • transition temperature of ferro → para
 Fe : 770°C
 Co : 1131°C
 Ni : 358°C
Ferromagnetic (super magnet)

• Magnetic moment alignment
 – Parallel magnetic moment alignment
Ferrimagnetic

– Only observed in compounds, which have more complex crystal structures than pure elements.
– Parallel alignment of atoms in some of the crystal sites and anti-parallel alignment of others.
– Ferrimagnetic materials usually have lower saturation magnetizations than ferromagnetic materials
Ferrimagnetic

Barium ferrite (BaO.6Fe$_2$O$_3$)

• The unit cell contains 64 ions
 – barium and oxygen ions have no magnetic moment
 – 16 Fe$^{3+}$ ions have moments aligned parallel
Ferrimagnetic

Barium ferrite (BaO.6Fe$_2$O$_3$)

- 8 Fe$^{3+}$ aligned anti-parallel giving a net magnetization parallel to the applied field,

- only $\frac{1}{8}$ of the ions contribute to the magnetization of the material.
Ferrimagnetic

- Magnetic moment alignment
 - Parallel magnetic moment in one site and anti-parallel in the other site
Antiferromagnetic

– Very similar to ferromagnetic materials

– The exchange interaction between neighboring atoms are anti-parallel alignment
Antiferromagnetic

– The magnetic field cancelled out

– Appears to behave in the same way as a paramagnetic material
Antiferromagnetic

– Only chromium is antiferromagnetic at room temperature

– Néel temperature, TN.
 • transition temperature of antiferro → para

 Cr: 37°C
Antiferromagnetic

- Magnetic moment alignment
 - Anti-parallel magnetic moment with neighboring atoms
Summary of different types of magnetic behavior

<table>
<thead>
<tr>
<th>Type of Magnetism</th>
<th>Susceptibility, Example</th>
<th>Atomic Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamagnetism</td>
<td>Small & negative Au (-2.74x10^{-6})</td>
<td>Atoms have no magnetic moment</td>
</tr>
</tbody>
</table>
Summary of different types of magnetic behavior

<table>
<thead>
<tr>
<th>Type of Magnetism</th>
<th>Susceptibility, Example</th>
<th>Atomic Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramagnetism</td>
<td>Small & positive</td>
<td>Atoms have randomly oriented magnetic moments</td>
</tr>
<tr>
<td></td>
<td>Cu (0.77x10^{-6})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β-Sn (0.19x10^{-6})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pt (21.04x10^{-6})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mn (66.10x10^{-6})</td>
<td></td>
</tr>
</tbody>
</table>
Summary of different types of magnetic behavior

<table>
<thead>
<tr>
<th>Type of Magnetism</th>
<th>Susceptibility, Example</th>
<th>Atomic Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferromagnetism</td>
<td>Large & positive function of applied magnetic moments field, microstructure dependent Fe (~100,000)</td>
<td>Atoms have parallel aligned</td>
</tr>
<tr>
<td>Type of Magnetism</td>
<td>Susceptibility, Example</td>
<td>Atomic Behaviour</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Antiferromagnetism</td>
<td>Small & positive Cr (3.6 \times 10^{-6})</td>
<td>Atoms have anti-parallel aligned</td>
</tr>
<tr>
<td>Type of Magnetism</td>
<td>Susceptibility, Example</td>
<td>Atomic Behaviour</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ferri-magnetism</td>
<td>Large & positive function of applied magnetic moments field, microstructure dependent Ba ferrite (~3)</td>
<td>Atoms have mixed parallel and anti-parallel aligned magnetic moments</td>
</tr>
</tbody>
</table>
Problem:

- Cr, Mo and W locate in the same group (group 6 or group VIB)
- Radius of:
 - $^{24}\text{Cr} = 128 \text{ pm}$
 - $^{42}\text{Mo} = 139 \text{ pm}$
 - $^{74}\text{W} = 139 \text{ pm}$
- Explain the radius phenomena of this group.