Ionic Solids

pranjoto utomo
Characteristic of ionic solid

- Conductivity
 - Solid
 - Ion strongly bond at crystal site
 - Ion can not migrate
 - Not conduct current
 - Melt
 - Ion can migrate
 - Conductor
Characteristic of ionic solid

• Melting point
 – Ionic bond occur to all direction
 – Strong ionic bonding
 – Has high m.p.
Characteristics of an ionic solid

- Ductile
 - When force hits the solid
 - Bond length shorter
 - Attraction force becomes repulsion force
 - Readily broken
- Dissolves in polar solvent
Model & Size of Ionic Compound

Atomic number >>>

Nuclei charge >>>

Atomic radius <<<
Model & Size of Ionic Compound

- Cation
 - Released electron
 - Effective nuclei charge >>>>
 - Attraction force >>>>
 - Cation size <<<
 - Radius of Na = 186 pm, Na$^+$ = 116 pm
 - Volume Na$^+$ = 0.25 V Na
Model & Size of Ionic Compound

• Anion
 – Accept electron
 – Effective nuclei charge <<<<
 – Attraction force <<<<
 – Anion size >>>>
 – Radius of O = 74 pm, O^{2-} = 124 pm
 – Volume O^{2-} = 5 V O
Trends of Ionic Radius

- Cation
 - Radius of: $\text{Na}^+_{11}, \text{Mg}^{2+}_{12}, \text{Al}^{3+}_{13} = 116, 86, 28$ pm
 - Left to right: (+) charge \gg, effective nuclei charge \gg, ionic radius \ll
Trends of Ionic Radius

• Anion
 – Radius of: \(_7N^{3-}, _8O^{2-}, _9F^- = 132, 124, 117 \) pm
 – Left to right: (-) charge <<<, effective nuclei charge >>>>, ionic radius <<<
 – Radius of: \(F^-, Cl^-, Br^-, I^- = 117, 167, 182, 206 \) pm
 – Top to down (in a group): atomic number >>>>, number of shell >>>>, ionic size>>>
Trends of Melting Point

• Ionic bond
 – (+) charge are surrounded by (-) charge in crystal site
 – Attraction force between (+) and (-) charge
Trends of Melting Point

- Melting
 - Breaking of the attraction force
 - Ion can migrate freely in liquid phase
 - Ionic size <<, bond strength >>>, melting point >>>

- M.p. Of KF, KCl, KBr, KI = 857, 772, 735, 685 °C
Polarization & Covalency

- Polarization: distort from the ideal form of anion (sphere)
- Polarization property $\gg\gg\gg$, degree of covalence $\gg\gg\gg$, covalent property $\gg\gg\gg$, covalent compound.
- ρ (charge density)
Polarization & Covalency

\[\rho = \frac{+1 \times 1.6 \times 10^{-19} \, \text{C}}{4/3 \times (3.14) \times (1.16 \times 10^{-7})^3 \, \text{mm}^3} = 24 \, \text{C mm}^3 \]

\(n \) = muatan ion

\(p \) = muatan proton = 1.6 \times 10^{-19} \, \text{C}
Polarization & Covalence

eg : radius of natrium = 116 pm

= 1,16 \times 10^{-7} \text{ mm}

so:

\[\rho = \frac{+1 \times 1,6 \times 10^{-19} \text{ C}}{4/3 \times (3,14) \times (1,16 \times 10^{-7})^3 \text{ mm}} = 24 \text{ C mm}^{-3} \]

\[\rho \gg \gg, \text{ polarization capacity } \gg \gg \]
Kasimir Fajans`s Rules

1. Cation size $<< \rightarrow (+) \text{ charge } \gg \rightarrow$ polarize capacity $\gg \rightarrow$ covalent compound
 - Radius of Al $<< \text{ Na}$
 \[\rho \text{ Na} = 24 \text{ C mm}^{-3} \]
 \[\rho \text{ Al} = 364 \text{ C mm}^{-3} \]
 - Polarization capacity of Al $\gg \text{ Na}$,
 - Al \rightarrow covalent compound (m.p. $<<$)
 - Na \rightarrow ionic compound (m.p. $>>$)
Kasimir Fajans`s Rules

2. Anion size $\gg \rightarrow (-)\ charge\ >> \rightarrow$ readily polarized \rightarrow covalent compound

- AlF_3 dan AlI_3
- $r\ \text{F}^- = 117\ pm$
- $r\ \text{I}^- = 206\ pm$
- Polarized capacity of $\text{I}^- \gg \text{F}^-$
- $\text{AlF}_3 \rightarrow$ ionic compound
- $\text{AlI}_3 \rightarrow$ covalent compound
Kasimir Fajans`s Rules

3. If the electronic configuration of the cation ≠ noble gas → polarize capacity >> → covalen compound

- $^{11}\text{Na} = [10\text{Ne}]\ 3s^1 \rightarrow \text{Na}^+ = [10\text{Ne}]
- $^{47}\text{Ag} = [36\text{Kr}]\ 4d^{10}\ 5s^1 \rightarrow \text{Ag}^+ = [36\text{Kr}]\ 4d^{10}$

- e- configuration ≠ noble gas
- polarize capacity of Ag$^+$ >> Na$^+$

- AgF → covalen compound, mp = 435°C
- NaF → ionic compound, mp = ± 735°C
AgF, AgCl, AgBr, AgI

• AgF
 – AgF \rightarrow dissolves in water
 – Radius of F$^-$ is the smallest compared to other halide ions.
 – F$^-$ the most difficult to be polarized
 – Form ionic compound
 – Soluble in water
• AgCl, AgBr, AgI
 – Insoluble in water
Na$_2$O dan Cu$_2$O

- Na$^+$ = [10Ne] \rightarrow ionic compound
- Cu$^+$ = [18Ar] 3d10 \rightarrow covalent compound

- e$^-$ configuration \neq e$^-$ configuration of noble gas
- Polarized capacity $>>$
- Form covalent compound
Na$_2$O dan Cu$_2$O

- Electronegativity of
 Na = 0.9, Cu = 1.9, O = 3.5
 - Δ electronegativity in Na$_2$O = 2.6 \rightarrow ionic
 - Δ electronegativity in Cu$_2$O = 1.6 \rightarrow covalent

Δ electronegativity $>>$ \rightarrow ionic compound
Hydration of Ion

• Why ionic compound is water soluble?
 – There is ion-dipol interaction between ion and water molecule
Hydration of Ion

- **Dissolution process of NaCl in water**

\[
\begin{align*}
\delta^+ & \quad 2\delta^- \\
H - O \quad \text{Na - Cl} \quad H - O \\
\delta^+ & \quad \delta^- \quad \delta^+ \quad 2\delta^- \\
\delta^+ & \quad \delta^+ \quad \delta^+ \quad \delta^+
\end{align*}
\]

- If the dipol interaction \gg total interaction of ions and water molecule \rightarrow soluble