CLOSE PACKING GEOMETRY

pranjoto utomo
Packing types

- **SIDE BY SIDE PACKING**
 - NOT A CLOSEST PACKING

- **HEXAGONAL PACKING**
 - CLOSEST PACKING
Expanding of side-by-side packing types

1. SIMPLE (PRIMITIVE) CUBIC (SC)

1. BODY CENTERED CUBIC (BCC)
SIMPLE CUBIC (SC)
1. SIMPLE CUBIC (SC)
2. **BODY CENTERED CUBIC (BCC)**
2. BODY CENTERED CUBIC (BCC)
Expanding of hexagonal packing types

1. HEXAGONAL CLOSE PACKING (HCP)

2. CUBIC CLOSE PACKING (CCP or FCC)
Close Packing First and Second Layers

Layer A

Layer B

Third layer can then be added in 2 ways:
1. Hexagonal Close Packing (HCP)

- The third layer fits into the holes of the B layer such that the atoms lie above those in layer A.
By repeating this arrangement one obtains ABABABAB... hexagonal closest packing.
1. Hexagonal Close Packing (HCP)

NOT A CUBIC PACKING
2. Cubic Close Packing (CCP or FCC)

- The third layer fits into the holes of the B layer and the atoms do not lie above those in layer A.
2. Cubic Close Packing (CCP or FCC)

By repeating this arrangement one obtains ABCABC............ cubic closest packing
2. Cubic Close Packing (CCP or FCC)

A CUBIC PACKING
Comparison of hcp & ccp
• Unit cell
 – An imaginary parallel-sided region from which the entire crystal can be built up

 – Usually the smallest unit cell which exhibits the greatest symmetry is chosen.

 – If repeated (translated) in 3 dimensions, the entire crystal is recreated.
Problem 1:

- Determine the number of atom per unit cell, coordination number and packing efficiency of:
 - Simple cubic (SC)
 - Body center cubic (BCC)
 - Face center cubic (FCC)
Corner atom = 1/8 atom per unit cell
Face atom = 1/2 atom per unit cell
Interior atom

Interior atom = 1 atom per unit cell

Body diagonal
Number of Atoms in SC Unit Cell
Number of Atoms in SC Unit Cell

\[\text{number of atom} = \frac{1}{8} \times 8 \text{ corner atoms} = 1 \text{ atom} \]
Coordination Number of SC = 6
Packing efficiency = 52%
Number of Atoms in BCC Unit Cell
Number of Atoms in BCC Unit Cell

\[
\text{number of atoms} = \frac{1}{8} \times 8 \text{ corner atoms} + 1 \text{ interior atom} = 2 \text{ atoms}
\]
Coordination Number of BCC

CN OF BCC = 8
Packing Efficiency of BCC

Packing efficiency = 68%
Number of Atoms in FCC Unit Cell
Number of Atoms in FCC Unit Cell

\[
\text{number of atoms} = \frac{1}{8} \times 8 \text{ corner atoms} + \frac{1}{2} \times 6 \text{ face atoms} = 4 \text{ atoms}
\]
Coordination Number of FCC

CN OF FCC = 12
Packing Efficiency of FCC

Packing efficiency = 74%
Keep in mind !!!

<table>
<thead>
<tr>
<th>Crystal lattice</th>
<th>Number of atoms</th>
<th>Coordination number</th>
<th>Lattice parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>1</td>
<td>6</td>
<td>$a = 2R$</td>
</tr>
<tr>
<td>BCC</td>
<td>2</td>
<td>8</td>
<td>$a\sqrt{3} = 4R$</td>
</tr>
<tr>
<td>FCC</td>
<td>4</td>
<td>12</td>
<td>$a\sqrt{2} = 4R$</td>
</tr>
</tbody>
</table>
holes in close packed

1. TETRAHEDRAL HOLE

1. OCTAHEDRAL HOLE
Holes in Close Packed

Tetrahedral hole

Different hole

Same hole

Octahedral hole
tetrahedral hole 2X octahedral hole

= Octahedral hole = 7

= Tetrahedral hole = 14

tetrahedral hole 2X octahedral hole
tetrahedral hole 2X octahedral hole

A
C
B

= Octahedral hole = 7

= Tetrahedral hole = 14

tetrahedral hole 2X octahedral hole
Tetrahedral hole

- Formed by a planar triangle of atoms, with a 4th atom covering the indentation in the center.

- The coordination number of an atom occupying an tetrahedral hole is 4.
Tetrahedral hole
Octahedral hole

- Lies within two staggered triangular planes of atoms.

- The coordination number of an atom occupying an octahedral hole is 6.
Octahedral hole
Crystal density determined by:

\[\rho = \frac{\sum n_i \times M}{N_A \times V} \]

Which:
- \(\rho \) = crystal density (g.cm\(^{-3}\))
- \(n_i \) = number of atoms per unit cell (atoms)
- \(M \) = molar mass of element (gram.mol\(^{-1}\))
- \(N_A \) = Avogadro number (6.02x10\(^{23}\) atoms.mol\(^{-1}\))
- \(V \) = volume of unit cell (cm\(^3\))
Problem 2

– Calculate the density (in gram.cm$^{-3}$) of platinum metal if it has a face centered cubic unit cell and a crystallographic radius of 135 pm (molar mass of platinum = 195.1 gram.mol$^{-1}$)
• Answer
 – fcc = 4 atoms per unit cell
 – Lattice parameter = a
 – In fcc → a\sqrt{2} = 4R → a = 2R\sqrt{2}
\[V \text{ cell} = a^3 \]
\[= (2R\sqrt{2})^3 \]
\[= (2 \times 135.10^{-10} \cdot \sqrt{2})^3 \text{ cm}^3 \]
\[= 5.567 \times 10^{-23} \text{ cm}^3 \]

\[\rho = \frac{\Sigma n_i \times M}{N_A \times V} \]

\[\rho = \frac{4 \text{ atoms} \times 195.1 \text{ gram.mol}^{-1}}{(6.02 \times 10^{23} \text{ atoms.mol}^{-1}) \times (5.567 \times 10^{-23} \text{ cm}^3)} \]
\[\rho = \frac{780.4 \text{ g}}{33.513 \text{ cm}^3} = 23.28 \text{ g.cm}^{-3} \]
Problem 3

– Assume the radius of one iron atom is 1.24 angstroms (1 angstrom = 1 x 10^{-8} cm). What would be the density of body centered cubic (BCC) iron in grams/cubic centimeter? Molar mass of iron = 55.85 gram.mol^{-1}
– Hint: Find the mass and volume of one unit cell.
– Remember to count only the fraction of each atom in the cell.
• Answer
 – bcc = 2 atoms per unit cell
 – In bcc:
 \[a\sqrt{3} = 4R \]
 \[a = \frac{4}{3} R \sqrt{3} \]
 \[a = \frac{4}{3} 1.24 \times 10^{-8} \text{ cm} \sqrt{3} \]
 \[= 2.86 \times 10^{-8} \text{ cm} \]
\[-V \text{ cell} = a^3 \\
= (2.86 \times 10^{-8} \text{ cm})^3 \\
= 2.34 \times 10^{-23} \text{ cm}^3\]
mass of iron = \frac{2 \text{ atoms} \times 55.85 \text{ gram.mol}^{-1}}{6.02 \times 10^{23} \text{ atom.mol}^{-1}}
= 1.85 \times 10^{-22} \text{ gram}

\rho = \frac{\text{mass}}{\text{volume}}
= \frac{1.85 \times 10^{-22} \text{ gram}}{2.34 \times 10^{-23} \text{ atom.mol}^{-1}}
= 7.91 \text{ g.cm}^{-3}
Problem 4

- Polonium (molar mass = 209 gram.mol\(^{-1}\)) metal crystallizes in a simple cubic structure.
 - Calculate the density (in gram.cm\(^{-3}\)) of the polonium metal if the atom radius is 176 pm.
 - Based on a literature density of 9.196 g cm\(^{-3}\), what is the radius of Po (in pm)?
Problem 5

- The radius of the copper atom is 127.8 pm, and its’ density is 8.95 g/cm3. Which unit cell is consistent with these data: sc, bcc, or fcc? (molar mass of Cu = 63.55 gram.mol$^{-1}$)
Problem 6
Below 1000°C Fe crystallizes in a body-centred cubic unit cell with an edge length of 0.28664 nm.
Above 1000°C Fe forms a face-centred cubic cell with an edge length of 0.363 nm.
• Determine the density of Fe under these conditions (in gram/cm3).
• Which one is denser, bcc or fcc?
• Compared to the packing efficiency, predict how it could be?
The end of the discussion
Of
Close Packing Geometry