PROSIDING

SEMINAR NASIONAL KIMIA

ISBN 978-979-98117-6-9

Peningkatan Kualitas Pendidikan dan Penelitian Kimia Menyongsong UNY sebagai World Class University

> R. Seminar FMIPA UNY 17 Oktober 2009

Diselenggarakan oleh : Jurusan Pendidikan Kimia FMIPA UNY Tahun 2009 dalam rangka SESNATALLO 3k OF. -53 Peningkatan Kualitas Pendidikan dan Penelitian Kimia Menyongsong UNY sebagai World Class University

Ruang Seminar FMIPA UNY, Yogyakarta, 17 Oktober 2009

Diterbitkan oleh

Jurusan Pendidikan Kimia

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Negeri Yogyakarta

Kampus Karangmalang, Sleman, Yogyakarta

Jurusan Pendidikan Kimia FMIPA UNY, 2009

Cetakan ke-1

Terbitan Tahun 2009

Katalog dalam Terbitan (KDT)

Seminar Nasional Kimia (2009 Oktober 17: Yogyakarta)

Prosiding/Penyunting Prodjosantoso, AK

Prodjosantoso, AK ... [et.al] – Yogyakarta : Jurusan Pendidikan Kimia FMIPA UNY Jurusan Pendidikan Kimia FMIPA UNY, 2009

... jil

1. Chemistry Congresses

I. Judul II. Prodjosantoso, AK

Jurusan Pendidikan Kimia FMIPA UNY

ISBN 978-979-98117-6-9

Penyuntingan semua tulisan dalam prosiding ini dilakukan oleh Tim Penyunting Seminar Nasional Kimia Jurusan Pendidikan Kimia FMIPA UNY.

PROSIDING SEMINAR NASIONAL 2009

Tema Seminar : Peningkatan Kualitas Pendidikan dan Penelitian Kimia

Menyongsong UNY sebagai World Class University

Tujuan Seminar

Mengakomodasi masukan dari berbagai sumber (pakar pendidikan, pakar bidang studi, pejabat pengambil kebijakan, pelaksana pendidikan dan stakeholders) dalam rangka pengembangan ilmu kimia dan pendidikan kimia untuk mendukung UNY sebagai World Class University.

Diterbitkan oleh:

Jurusan pendidikan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Editor Prosiding:

Prof. AK. Prodjosantoso, Ph.D Prof. Dr. Nurfina Aznam Dr. Indyah Sulistyo A. Prof KH. Sugiyarto

Alamat Tim Penyunting:

Jurusan pendidikan Kimia, FMIPA UNY Kampus Karanvgmalang Yogyakarta

KATA PENGANTAR

Prosiding ini merupakan hasil kumpulan makalah yang telah dipresentasikan oleh pendidik di tingkat Pendidikan Menegah maupun Pendidikan Tinggi, peneliti dalam lingkungan pendidikan maupun industri pada Seminar Nasional yang diselenggarakan oleh Jurusan Pendidikan Kimia FMIPA Universitas Negeri Yogyakarta

Prosiding ini maksudkan untuk menyebarluaskan hasil-hasil kajian dan penelitian bidang kimia dan pendidikan kimia kepada para dosen, guru, dan pemerhati pendidikan di Indonesia. Sesuai dengan tema seminar, yaitu Peningkatan Kualitas Pendidikan dan Penelitian Kimia Menyongsong UNY sebagai World Class Universit, diharapkan prosiding ini mampu menjadi media bagi para peneliti, pemikir dan pemerhati pendidikan untuk saling bertukar ide guna perkembangan ilmu serta mempersiapkan UNY sebagai tempat pencetak tenaga pendidik yang professional.

Prosiding ini tentu saja tidak luput dari kekurangan, namun dengan mengesampingkan kekurangan tersebut, terbitnya prosiding ini diharapkan dapat membantu para pendidik maupun peneliti utnuk mencari referensi dan menambah motivasi dalam mendidik ataupun penelitian.

Yogyakarta, Oktober 2009 Tim Penyunting

DAFTAR ISI

PEMAKALAH UTAMA	
Prof. Dr. Sjamsul Arifin Achmad	
Keanekaragaman Hayati Sebagai Panggung Ilmu Pengetahuan	
Kimia Bahan Alam Yang Indah	
Prof. Dr. Nurfina Aznam, Apt. SU	
Peningkatan Kualitas Pendidikan Dan Penelitian Kimia Menuju	
UNY Sebagai World Class University	
Prof. Dr. Suwarsih Madya	
Kebijakan Peningkatan Kualitas Profesionalisme guru di DIY	
PEMAKALAH PENDAMPING	
Ari Widiyantoro, Elvi Rusmiyanto Pancaning Wardoyo, dan Wolly Candramila	1
Karakterisasi Senyawa Aktif Antihiperglikemia dan	
Antihiperlipidemik dari Fraksi Metanol Kulit Batang Manggis	
(Garcinia mangostana Linn)	
C. Budimarwanti	5
Sintesis Senyawa 4-Hidroksi -5-Dimetilaminometil-3-Metoksibenzil	
Alkohol dengan Bahan Dasar Vanilin Melalui Reaksi Mannich	
Haryoto, Euis H.Hakim, Yana M. Syah, Sjamsul A. Achmad, Lia D.	10
Juliawaty, Laily Bin Din, Jalifah Latip	
Senyawa Dimerstilbenoid Dari Kulit Batang Shorea Ovalis	
(Dipterocarpaceae) dan Efek Sitotoksisitas terhadap Sel Leukemia P-	
388	
Indyah Sulistyo Arty	16
Sintesis Beberapa Senyawa Mono Para-Hidroksi Kalkon dan Uji	
Sitotoksisitasnya Terhadap Sel Raji	
Soerya Dewi M, Saptono Hadi, Eliza Nur Setyowati	23
Isolasi dan Identifikasi Komponen Kimia Penyusun	
Minyak Atsiri Daun Sirih Merah (Piper crocatum Ruiz)	
Sri Atun	29
Phytochemical Study Some Phenolic Compounds from Anisoptera	
Marginata	
Sri Handayani	34
Mempelajari Sintesis Senyawa Tabir Surya Melalui	
Modifikasi Reaksi Kondensasi Aldol Silang	
Retno Arianingrum & Sri Handayani	39
Aktivitas Sebagai Pencegah 2-Deoksiribosa dari	
Buah Pare (Momordica Charantia L.)	
Fx. Ashar Andriyanto dan Supriyanto C.	43
Uji Mutu Bahan Standar Pembanding Berdasarkan Data Dukung	
Metoda Nyala Spektrometri Serapan Atom (SSA)	
Dadang Hermawan ¹ , Ani Guntarti ¹ , Zainul Kamal ²	48
Uji Cemaran Logam Kadmium (Cd) dalam Air Sungai Cidurian	
Kabupaten Serang secara Spektrofotometri Serapan Atom	
Siti Sulastri	52
Silika Termodifikasi Sulfonat: Sintesis, Karakterisasi dan	

Pemanfaatan	
Kris Tri Basuki dan Isyuniarto	56
Degradasi Sianida Pada Ketela Pohon Menggunakan	30
Oksidan Ozon Dan Kapur	
Suyanta, Sunarto, Lis Permanasari, Ari R, Desi, Nur J.	60
Penentuan Konstanta Kestabilan Kompleks Ion Logam La(III),	
Ce(III) Dan Cu(II) dengan Ligan N,N'-Dikarboksimetil-Diaza-18-	
Crown-6 Secara Titrasi Potensiometri	
Supriyanto C. dan Samin	66
Validasi Metode Spektrometri Serapan Atom Dan Estimasi	
Ketidakpastian Pada Analisis Cr, Fe, Dan Cu Dalam Sedimen Laut	
Maluku	
Kris Tri Basuki dan Isyuniarto	70
Pengolahan Limbah Cair Industri Tekstil dengan Teknologi Plasma	
(Studi Kasus PT. Primatex Co)	
Sunarto	75
Aplikasi Konstanta Kestabilan Kompleks pada Analisis	
Spektrofotometri Serapan Atom	70
M. Masykuri, Cynthia L. Radiman, I Made Arcana, dan Deana	79
Wahyuningrum Efektivitas Etilena Diamina Sebagai Pemanjang Rantai dalam	
Transformasi Kopolimer Poli(uretan-urea) Tersegmentasi	
Sulaeman	84
Penelitian Pengolahan Air Limbah Batik Hasil Pencelupan	04
Menggunakan Zat Warna Naphtol	
Susila Kristianingrum	89
Kajian Berbagai Metode Analisis Residu Pestisida dalam Bahan	
Pangan	
Endang Widjajanti Laksono	95
Kajian penggunaan adsorben sebagai alternatif pengolahan limbah	
zat pewarna tekstil	1
Giyatmi, Zainul Kamal, Muflihatul Imtahanah	100
Pengaruh Jenis Kelamin dan Lama Pemakaian Cat Rambut terhadap	
Kadar Pb dalam ambut	
Isana SYL	106
Variasi Temperatur dan Waktu pada Elektrolisis Larutan Garam	
Dapur Berbagai Merk	110
Dewi Yuanita Lestari, Triyono, Wega Trisunaryanti	113
Hidrogenasi Katalitik Metil Oleat Menjadi Stearil Alkohol	
Menggunakan Katalis Ni/Zeolit Alam Aktif Sulaeman	117
Mencari Faktor Konversi Pada IMKM Batik	11/
Agung Nugroho Catur Saputro, Indriana Kartini, Sutarno	122
Pengaruh Penghilangan Tahap Deproteinasi Dalam Metode	122
Preparasi Kitosan Terhadap Sifat Termal dan Kristalinitas Kitosan	
Lukman Hakim, Rr. Nuri Hidayati Mukaromah, Nurcahyo Iman Prakoso,	127
Harno Dwi Pranowo	14/

Pemodelan Molekular Analog Ssenyawa Kurkumin	
Pentagamavunon-0 (PGV-0) dan Pentagamavunon-1 (PGV-1)	
dengan Metode Kimia Komputasi ab initio HF/4-31G	
Sri Murniasih, Sukirno, Agus Taftazani	134
Perbandingan Aktivitas Radionuklida dalam Sampel Teh, Kopi dan	101
Gula di Pulau Jawa dengan Data Referensi Berbagai Negara	
I Made Sukarna dan Dwi Biyantoro	140
Optimasi Proses Ekstraksi Stripping Itrium (Y) dari Konsentrat	
Logam Tanah Jarang Hasil Olah Pasir Senotim	
Siang Tandi Gonggo, I Made Arcana, Afadil	149
Potensi Limbah Plastik Styrofoam Sebagai Membran Elektrolit	
Sel Bahan Bakar	
Kun Sri Budiasih	156
Meningkatkan Fungsi Material Silika-Alumina melalui preses	
Geopolimerisasi	
Asep Supriatna, Ahmad Mudzakir, dan Adam Nugraha	161
Sintesis dan Karakterisasi Bentonit Termodifikasi Fatty	
Imidazolinium	
Sri Hastuti, Abu Masykur, Panji Surjadi Mosha	168
Fotodegradasi Zat Warna Metil Orange Menggunaan Katalis	
Semikonduktor Zno Dengan Penambahan Ion Logam Cu ²⁺	
Sri Murniasih dan Sukirno	172
Kajian Korelasi Dari Radioaktivitas Th-232 Dengan U-238 Dalam	
Sedimen Gajahwong dengan Teknik Spektrometri Gamma	450
Iqmal Tahir , Yoeswono	179
Optimasi Proses Transesterifikasi Minyak Sawit dengan Methanol	
dan Katalis KOH untuk Pembuatan Biodiesel	105
Kamalasari dan Eli Rohaeti	185
Peningkatan Kualitas Pembelajaran Melalui <i>Lesson Study</i> Berbasis Musyawarah Guru Mata Pelajaran (MGMP)	
Das Salirawati	192
Pembelajaran Kontekstual Kimia Berbasis Kontroversi Isu yang	
Berkembang di Masyarakat	
Marfuatun dan Suwardi	199
Pembuatan Media Pembelajaran Berbasis Program Director MX	
Pada Mata Kuliah Kimia Dasar I untuk Topik Ikatan Kimia dan	
Struktur Molekul	***
Rr. Lis Permana Sari dan Sukisman Purtadi	203
Penilaian Berkarakter Kimia Berbasis Demonstrasi Untuk	
Mengungkap Pemahaman Konsep dan Miskonsepsi Kimia pada	
Siswa SMA	210
Kamalasari dan Eli Rohaeti	210
Dinamika Pembelajaran	215
Eddy Sulistyowati	215
Manfaat MPN-coliform terhadap Kualitas Air Minum	210
Annisa Fillaeli	219
Kajian Aflatoksin sebagai Salah Satu Cemaran Alami Bahan Pangan	

Suwardi, Erfan Priyambodo dan Agus Salim				
	Pengembangan Dan Pemanfaatan Media Pembelajaran Interaktif			
	Berbantuan Komputer Pada Mata Kuliah Workshop Pendidikan			
	Kimia Untuk Meningkatkan Motivasi Belajar Mahasiswa			
Budi Hastuti , Saptono Hadi				
	Pengaruh Penambahan Konsentrasi Gula Terhadap Kualitas Nata			
	De Soya Dari Limbah Cair Tahu			

Kajian Aflatoksin Sebagai Salah Satu Cemaran Alami Bahan Pangan

Annisa Fillaeli

Jurusan Pendidikan Kimia, FMIPA UNY e-mail : fillelly@yahoo.com

Abstrak

Makalah ini bertujuan untuk mengkaji aflatoksin sebagai salah satu cemaran bahan pangan. . Aflatoksin adalah salah satu jenis mikotoksin yang paling toksik. Aflatoksin dapat merusak dan menurunkan kualitas bahan pangan Pada tahun 1988 IARC menempatkan aflatoksin dalam daftar penyebab kanker pada manusia. Aflatoksin dapat ditemukan pada jagung, sorgum, kedelai, gandum, kacang-kacangan, beras, biji kapas, ubi dan kopra. Jamur penyebab aflatoksin dapat tumbuh pada temperatur dan kelembaban yang tinggi. Akumulasi aflatoksin di dalam tubuh manusia dapat menyebabkan residu yang berpotensi tinggi sebagai penyebab kanker hati. Toksisitas aflatoksin dipengaruhi oleh struktur kimianya. Pakan yang terkontaminasi aflatoksin dapat terpapar dalam bahan pangan yang berasal dari hewan. Berdasarkan hasil penelitian, aflatoksin teridentifikasi pada berbagai level kontaminan dalam berbagai sampel bahan pangan. Penanganan pra dan pasca panen dapat meningkatkan kualitas bahan pangan.

Kata kunci: aflatoksin, bahan pangan

Pendahuluan

Pangan merupakan kebutuhan mendasar manusia yang paling pokok. Pemenuhan kebutuhan pangan merupakan hak asasi utama umat manusia, karena hanya dengan pemenuhan pangan yang layak dan aman dikonsumsi manusia dapat tumbuh dan berkembang. Pangan yang layak dikonsumsi harus ada dalam keadaan normal dan tidak menyimpang dari karakteristik yang seharusnya dimiliki, yaitu harus bebas dari bahaya biologis, kimia dan fisika yang membahayakan kesehatan manusia. Dari sudut pandang inilah keamanan pangan merupakan suatu keharusan (Widodo, 2003).

Keamanan makanan merupakan suatu kondisi dan upaya yang diperlukan untuk mencegahnya dari kemungkinan cemaran biologis, kimia dan benda lain yang dapat mengganggu, merugikan dan membahayakan kesehatan manusia (Balai POM RI, Selain itu keamanan makanan juga dimaksudkan untuk menjamin persediaan makanan yang bebas dari pencemaran bahan-bahan kimia berbahaya dan cemaran mikroba yang dapat menganggu, merugikan dan membahayakan kesehatan manusia atau mengganggu keyakinan seseorang atau masyarakat (Dep. Kes. RI.1997). Cemaran mikrobia patogen dari bahaya biologis terhadap pangan ada yang berasal dari jamur yang dapat menghasilkan suatu zat toksik yang bernama mikotoksin (Agus dkk., 2006).

Mikotoksin adalah suatu kelompok zat toksik yang merupakan hasil metabolisme sekunder jamur (Betina, 1989 dalam Gremmels dan Georgiou, 1996) dan memiliki anggota lebih dari 300 senyawa kimia (Cardona dkk., 2006). Mikotoksin banyak ditemukan di beberapa negara dengan iklim tropis seperti Indonesia yang memiliki kisaran tertentu hujan, temperatur dan kelembaban (Freddy dan Waliyar, 2000). Aflatoksin merupakan salah satu jenis mikotoksin yang mendapatkan perhatian paling utama karena paling toksik (Makfoeld, 1993). Bila cemaran aflatoksin dalam pangan yang dikonsumsi berlangsung dalam waktu yang lama, akan memicu timbulnya kanker terutama kanker hati. Oleh karena itu pada tahun 1988 IARC menempatkan aflatoksin dalam daftar karsinogen pada manusia (Saad, 2006).

Pembahasan

Aflatoksin merupakan senvawa bisfuranokoumarin yang merupakan hasil metabolisme sekunder strain toksigenik (Lee dkk., 1985) beberapa jenis jamur, di antaranya adalah Aspergillus flavus (A. flavus), A. parasiticus, A. niger, A. oryzae, A. rubber, A. wentii, A. ostianus, Penicillium citrinum (P. citrinum), P. frequentans, P. expansum, P. variabile, P. puberulum, Rhizopus sp., dan Mucor mucedo (Uraguchi dan Yamazaki, 1978, dalam Makfoeld, 1993). A. flavus dan A. parasiticus merupakan jamur pemroduksi utama aflatoksin. Nama aflatoksin diambil dari singkatan atas penggal kata Aspergillus flavus toksin.

Beberapa jenis aflatoksin diantaranya adalah aflatoksin B_1 , B_2 , G_1 , G_2 , M_1 dan M_2 . Aflatoksin B_1

Makalah disajikan dalam Seminar Nasional Kimia Jurusan Pendidikan FMIPA UNY dengan Tema "Peningkatan Kualitas Pendidikan dan Penelitian Kimia Menyongsong UNY sebagai World Class University" pada 17 Oktober 2009 di Ruang Seminar FMIPA UNY adalah aflatoksin yang paling karsinogenik dengan persentase terbesar. Bukti pengaruh akut aflatoksin pada manusia telah dilaporkan dari berbagai belahan dunia terutama dari negara dunia ketiga seperti Taiwan, Uganda, India dan beberapa negara lain. Sindrom ditandai dengan muntah-muntah, sakit perut, edema paru, konvulsi, koma, dan kematian dengan edema otak dan hati, ginjal serta jantung berlemak.

Jenis-jenis aflatoksin memiliki struktur yang mirip dan membentuk satu kelompok unik yang secara alami merupakan senyawa heterosiklik (Saad. 2006). Wujud kimiawi aflatoksin untuk pertama kalinya dilaporkan pada tahun 1960 dan kemudian 1962 selepas kejadian kematian kalkun piaraan (turkey kill) tahun 1960 di Inggris (Miller, 1987 dalam Rahayu dan Sudarmaji, 1989). Para peneliti pada waktu itu memisahkan senyawa beracun tadi secara kromatografi menjadi empat komponen yang berbeda. Berdasarkan cara pengenalannya dengan sinar ultraviolet (UV), dua komponen berfluoresensi biru sehingga diberi kode B₁ dan B₂ dan yang lainnya berfluoresensi hijau dan diberi kode G1 dan G2. Perbedaan struktur kimia antara senyawa B dan G menyebabkan akibat besar pada kekuatan racunnya.

Tabel 1. Sifat-sifat kimia dan fisika aflatoksin dan furunannya

,					
Afla	Rumus	BM	Titik	3	Emisi
toksin	molekul		leleh	(362-363 nm)	Fluo
			(°C)		resensi
B_1	$C_{17}H_{12}O_6$	312	268 - 269	21800	425 nm
B_2	C17H14O6	314	286 - 289	23400	425 nm
G_1	$C_{17}H_{12}O_7$	328	244 - 246	16100	450 nm
G_2	$C_{17}H_{14}O_7$	330	237 - 240	21000	450 nm
M_1	$C_{17}H_{12}O_7$	328	299	19000 (357 nm)	425 nm
M_2	$C_{17}H_{14}O_7$	330	293		
B_{2a}	C17H14O7	330	240	20400	
G_{2a}	$C_{17}H_{14}O_8$	346	190	18000	
GM_1	$C_{17}H_{12}O_8$	344	276	12000 (358 nm)	-

Berdasarkan struktur kimianya, Aflatoksin B₁ merupakan aflatoksin yang paling kuat daya racunnya dan dapat berubah menjadi jenis aflatoksin lain yang daya racunnya sudah jauh berkurang (Rahayu dan Sudarmaji, 1989). Aflatoksin B₁ termasuk dalam kategori 1 senyawa karsinogenik aktif (IARC, 2006).

Aflatoksin B₁ memiliki rumus molekul C₁₇H₁₂O₆. Bentuknya kristal putih pucat hingga kekuningan dengan berat molekul 312. Meleleh pada 268 – 269 °C (dekomposisi) (Jones B.D., 1977). Berfluoresensi biru kuat dari pendaran sinar UV pada panjang gelombang 425 nm. Larut dalam metanol, kloroform, asetonitril dan aseton (Freddy dan Waliyar, 2000). Memiliki karakteristik spektral : [α]_D dalam CHCl₃ -558; λ_{max} dalam EtOH 223,

265, dan 362 nm (masing-masing ϵ -nya 25600; 13400, dan 21800); v_{max} dalam CHCl $_3$ 1760 (intens), 1684 (lemah), 1632, 1598 dan 1562 cm $^{-1}$. Spektrum NMR yang diukur dalam CDCl $_3$ menunjukkan sinyal pergeseran kimia dari tetrametilsilan pada 6,89 (doblet, J = 7 Hz, 1H); 6,52 (triplet, J = 2,5 Hz, 1H); 5,53 (triplet, J = 2,5 Hz, 1H); 4,81 δ (triplet dari doblet, J = 2,5 dan 7 Hz, 1H). Polanya menunjukkan 4 proton dari cincin dihidrofuran. Sinyal tambahan pada 6,51 (singlet, 1H) dan 4,02 δ (singlet, 3H) menunjukkan suatu senyawa aromatis dari 3 gugus proton metoksi (Jones B.D., 1977).

Gambar 2. Struktur kimia aflatoksin B₁

Aflatoksin B₁ merupakan mikotoksin yang bersifat stabil terhadap pemanasan (Samson dkk., 1995 dalam Agus dkk., 2006). Batas maksimum aflatoksin dalam makanan (aflatoksin B₁, atau jumlah dari aflatoksins B₁, B₂, G₁ dan G₂) bervariasi dari nol hingga 50 ppb (Van Egmond, 1987; Jewers, 1987 dalam Cardona dkk., 2006). WHO/FAO/UNICEF menetapkan batasan 30 ppb (Dharmaputra dkk., 1989 dalam Ginting, 2006) dan Departemen Kesehatan RI menetapkan 20 ppb untuk aflatoksin B₁ dalam makanan (Rahmianna dan Taufiq, 2003 dalam Ginting, 2006).

Toksisitas aflatoksin dapat dipengaruhi oleh faktor-faktor lingkungan (sanitasi), tingkat cemaran, lama terjadinya cemaran, usia, tingkat kesehatan, dan kualitas makanan. Aflatoksin terutama aflatoksin B₁ sangat berpotensi sebagai karsinogen pada berbagai spesies, termasuk primata selain manusia, burung (unggas), ikan dan hewan pengerat.

Pada masing-masing spesies, hati merupakan target utama. Metabolisme memainkan peran penting dalam menentukan toksisitas aflatoksin B₁. Penelitian menunjukkan bahwa aflatoksin ini membutuhkan aktivasi metabolik untuk menghasilkan efek karsinogen. Efek ini dapat dimodifikasi dengan induksi atau inhibisi menggunakan fungsi campuran sistem oksidasi.

Secara alami aflatoksin terdapat dalam jagung, barley, kedelai, gandum, biji sorgum (Wilson dan Hayes, 1978 dalam Makfoeld, 1993), kacangkacangan, gabah termasuk beras dan menirannya, biji kapas, singkong dan kopra (Lee dkk., 1985). Hewan ternak yang mengonsumsi pakan tercemar aflatoksin akan meninggalkan residu aflatoksin dan metabolitnya pada produk ternak seperti daging, telur, dan susu sebagai bahan pangan bagi manusia.

Berdasarkan hasil penelitian Direktorat Surveilan dan Penyuluhan Keamanan Pangan Badan POM RI pada tahun 2007, kontaminasi aflatoksin B₁ pada pakan ternak relatif tinggi. Kadar aflatoksin B₁ tertinggi ditemukan pada pakan konsentrat ayam, sekitar 134,2 ppb. Di Jawa Barat, jagung yang digunakan sebagai bahan baku di pabrik pakan ternak ditemukan terkontaminasi aflatoksin B₁ dengan kadar rata-rata 125,65 ppb. Pakan ayam, baik untuk starter maupun grower, juga ditemukan terkontaminasi aflatoksin dengan kisaran antara 11,5 sampai 53 ppb.

Heny Yusrini menganalisis kandungan aflatoksin B₁ pada pakan ternak dan bahan dasarnya secara ELISA pada tahun 2005. Dari 13 contoh pakan jadi dan 17 contoh bahan dasar pakan yang diperiksa secara ELISA, 100% contoh tersebut mengandung aflatoksin B₁. Kadar aflatoksin pakan jadi (pakan itik dan pakan ayam) berada di bawah batas maksimum residu yaitu 50 ppb. Dua contoh jagung mengandung aflatoksin lebih besar 50 ppb dari persyaratan SNI. Contoh lainnya (93,3%) mengandung aflatoksin rendah, masih berada di bawah standar mutu SNI.

Penelitian pada sampel kacang tanah lokal dari kabupaten Pati dan Wonogiri Jawa Tengah ditemukan kandungan aflatoksin $B_1 > 15$ ppb persentase tertinggi pada tingkat pengecer di pasar tradisional (33,3 %), sedangkan di kabupaten Cianjur Jawa Barat persentase tertinggi pada tingkat grosir (80 %). Pada musim hujan kandungan aflatoksin pada biji kering di tingkat grosir dan pengecer pasar tradisional mencapai lebih dari 5000 ppb (Badan POM RI, 2007).

Penelitian yang dilakukan terhadap 5 jenis simplisia yang diambil secara purposif dari 5 pabrik di Jakarta dan sekitarnya, 5 pabrik di Jawa Tengah dan 5 pabrik di Jawa Timur juga membuktikan adanya cemaran aflatoksin. Pemeriksaan angka kapang jamur A.flavus menunjukkan bahwa jumlah Kencur, Adas dan Jung rahab masingmasing 33,33 % tidak memenuhi batas persyaratan Kepmenkes No.661/1994, sedangkan Laos 22,22 % serta Sembung 11,11%. A. flavus ditemukan pada Adas 77,77 % dengan positif aflatoksin B2 55,55%, pada Kencur ditemukan A. flavus 33,33 % dijumpai positif aflatoksin B₁ 11,11 %, dan pada Laos, Jung Rahab serta Sembung ditemukan A. flavus masingmasing 11,11%. Jung rahab positif aflatoksin B₁ 11,11 %, Sembung tidak positif aflatoksin. Pemeriksaan di tetapkan secara mikrobiologi sedangkan penetapan aflatoksin ditetapkan secara KLT (Ani dkk, 2002).

Noor, dkk (2006) mengisolasi jamur Aspergillus flavus Link, Aspergillus niger van Tieghem, Aspergillus wentii Wehmer, Aspergillus PUI, Aspergillus PUII, dan Penicillium citrinum Thom dari sampel petis udang merk X dan Y yang diambil di pasar tradisional dan pasar swalayan. Dari uji aflatoksin, diketahui bahwa sampel-sampel tersebut menunjukkan hasil positif. Petis udang yang diperoleh dari pasar swalayan lebih rendah kandungan aflatoksinnya (7,3 ppb dan 4,2 ppb) dibandingkan dengan petis udang dari pasar tradisional (78,2 ppb dan 6,2 ppb).

Dari beberapa penelitian tersebut menunjukkan bahwa berbagai jenis aflatoksin dapat terkandung dalam bahan pangan maupun pakan dalam berbagai level kontaminasi. Hal ini menjadi perhatian serius karena rendahnya kualitas pangan dapat menurunkan tingkat kesehatan masyarakat. Beberapa hal yang dapat dilakukan untuk meningkatkan kualitas bahan pangan yang berarti memininmalkan kemungkinan terjadinya kontaminasi aflatoksin antara lain:

- Melakukan peningkatan manajemen bercocok tanam, penggunaan varietas tanaman tahan serangan jamur toksigenik pada proses pra nanen.
- Mendidik konsumen untuk dapat mengenali dan tidak mengonsumsi bahan pangan yang tercemar Aflatoksin dengan memilih bahan pangan yang berkualitas baik dan tidak berjamur.
- Mendidik petani, pedagang pengumpul, grosir, pengecer, industri pangan dan pakan mengenai cara penanganan pasca panen yang baik, melalui media berupa brosur, artikel pada majalah ilmiah populer, dan lain-lain.
- 4. Penyimpanan hasil pertanian sebaiknya dilakukan pada kondisi ruang penyimpan yang sejuk (suhu 27°C) dan kering dengan menggunakan bahan pengemas kedap udara dan diletakkan secara bertumpuk di atas rak-rak kayu serta diberi jarak dengan dinding.
- Melakukan monitoring terhadap kadar aflatoksin pada pangan dan pakan secara kuantitatif dan semi kualitatif pada berbagai tahapan.
- Melakukan survei yang lebih luas dan terpadu terhadap kontaminasi aflatoksin pada berbagai bahan pangan dan pakan di berbagai daerah (kabupaten, provinsi) di Indonesia.
- Menangani masalah aflatoksin dengan koordinasi berbagai pihak meliputi pemerintah, produsen, konsumen, praktisi, akademisi dan peneliti.
- Mendistribusikan informasi yang diperoleh kepada penyuluh pertanian, importir, grosir, dan pedagang pengecer serta industri pangan dan pakan.

Kesimpulan

Aflatoksin merupakan salah satu jenis mikotoksin yang paling berbahaya karena dapat menimbulkan kanker hati. Struktur kimia aflatoksin mempengaruhi tingkat toksisitasnya. Aflatoksin ditemukan pada berbagai bahan pangan dan pakan pada berbagai tingkat kontaminasi. Tingkat kontaminasi aflatoksin dapat diminimalkan antara lain dengan meningkatkan manajemen pra dan pasca panen serta monitoring bahan pangan.

Daftar Pustaka

- Agus, A., Utami, M.P.D., Nuryono, Noviandi, C.T., Wedhastri, S., Maryudhani, Y.B., dan Sarjono. 2006. Cemaran Beberapa Jenis Mikotoksin pada Beberapa Produk Pangan dan Pakan Ternak di Propinsi Daerah Istimewa Yogyakarta. Kumpulan makalah Aflatoksin Forum di Fakultas Teknologi Pertanian UGM, Yogyakarta.
- Ani Isnawati, Daroham Mutiatikum, Nikmah B. 2002. Media Penelitian dan Pengembangan Kesehatan, Vol 12, No 3.
- Badan Pengawas Ohat Dan Makanan RI. 2003.
 Peraturan di Bidang Pangan. Direktorat Surveilan Dan Penyuluhan Keamanan Pangan.
 Deputi Bidang Pengawasan Keamanan Pangan Dan Bahan Berbahaya. Jakarta. Hal 2, 4, 15, 21
- Badan Pengawas Ohat Dan Makanan RI. 2007. Direktorat Surveilan dan Penyuluhan Keamanan Pangan Foodwatch, Sistem Keamanan Pangan Terpadu, Aflatoksin. Jakarta. Vol.2.
- Cardona T.D., Ilangantileke S.G., and Noomhorm A. 2006. Aflatoxin Research on Grain in Asia - Its Problems and Possible Solutions.
 - http://www.fao.org/docrep/X5036E/x5036E1e.h tm. 17 Juni 2006.
- Departemen Kesehatan RI (1997). Program dan Kegiatan Pengawasan Makanan. Buletin Direktorat Jenderal Pengawasan Ohat dan Makanan. Jakarta. Vol. 19. No.2. Hal. 10-17.
- Freddy, S., and Waliyar, F. 2000. Properties of Aflatoxin and It Producing Fungi. http:www.aflatoxin.info/aflatoxin.asp. 28 September 2009.
- Ginting, E., Rahmianna, A.A., dan Yusnawan, E. 2006. Pengendalian Kontaminasi Aflatoksin pada Produk Olahan Kacang Tanah melalui Penanganan Pra dan Pasca Panen.

- http://jatim.litbang.deptan.go.id/kacang%20tana h.pdf. 28 September 2009.
- Gremmels J.F. and Georgiou N.A. 1996. Risk Assessment of Mycotoxins for the Consumer, dalam Istituto and Spallanzani, L. (org.). Residues of Veterinary Drugs and Mycotoxins in Animal Product - New Methods for Risk Assessment and Quality Control. Wageningen Press. Wageningen.
- Heny Yusrini. 2005. Teknik Analisis Kandungan Aflatoksin Bl secara ELISA pada Pakan Ternak dan Bahan Dasarnya. Buletin Teknik Pertanian. Vol. 10 No. 1: 16-19
- IARC. 2006. Overall Evaluations of Carcinogenicity to Humans. http://monographs.iarc.fr/ENG/Classification/crt hgr01.php. 23 Maret 2007.
- Jones B.D. 1977. Chemistry of Aflatoxin and Related Compounds, dalam Thomas D Wyllie and Lawrence G Morehouse (ed.). Mycotoxic Fungi, Mycotoxins, Mycotoxicoses An Encyclopedic Handbook. Volume 1 Mycotoxic Fungi and Chemistry of Mycotoxins. Marcel Dekker, Inc. New York.
- Lee, Cheeke, P.R., Shull, R. 1985. Natural Toxicants in Feeds and Poisonous Plants. AVI Publishing Company. Wetsport Connecticut.
- Makfoeld Djarir. 1993. Mikotoksin Pangan.. Kanisius. Yogyakarta.
- Noor Soesanti Handajani dan Ratna Setyaningsih. 2006. Identifikasi Jamur dan Deteksi Aflatoksin B₁ terhadap Petis Udang Komersial BIODIVERSITAS Vol. 7, No. 3 : 212-215.
- Rahayu, K. dan Sudarmaji, S. 1989. Mikrobiologi Pangan. Pusat Antar Universitas Pangan dan Gizi UGM. Yogyakarta.
- Saad, N. 2006. Aflatoxins. Occurrence and Health Risk.
 - http://www.ansci.cornell.edu/plants/toxicagents/ aflatoxin/aflatoxin.html.5 Oktober 2009.
- Widodo. 2003. Bioteknologi Industri Susu. Dua Warna. Yogyakarta.