SILABUS

Fakultas : MIPA UNY Program Studi : Matematika

Mata Kuliah : Penelitian Operasional / SMT 302

Jumlah sks : Teori 2 sks Praktik 1 sks

Semester : V

Mata Kuliah Prasyarat & Kode : Pemrograman Linear I / MAT 330

Dosen : Caturiyati, M.Si.

I. DESKRIPSI MATA KULIAH

Latar belakang: optimisasi, penelitian operasional dan model-modelnya; Masalah transportasi dan *transshipment*: skenario, model dan teknik penyelesaiannya serta terapannya; Masalah penugasan dan masalah *travelling salesman*; Mempelajari teknik / algoritma-algoritma: jaringan lintasan terpendek, lintasan terpanjang (PERT/CPM), pohon perentang maksimal, arus maksimal; Mempelajari teknik penyelesaian masalah pemrograman dinamik.

II. STANDAR KOMPETENSI MATA KULIAH

Mahasiswa dapat menjelaskan berbagai masalah penelitian operasional dengan algoritma yang sesuai dan mencoba menerapkannya dalam berbagai masalah yang ada dalam berbagai bidang.

III. RENCANA KEGIATAN

Tatap Muka ke-	Kompetensi Dasar	Materi Pokok	Strategi Perkuliahan	Sumber Bahan/ Referensi
1	Mahasiswa dapat memahami masalah optimisasi dan mampu memodelkannya	Masalah Optimisasi dan Pemodelan Matematika	Perkuliahan Tatap Muka dan Diskusi	A:1-8 C:1-12
2-3	Mahasiswa dapat menyelesaikan masalah transportasi	Masalah Transportasi Umum dan Optimisasinya (Review)	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:193-211 B:338-369 C:233- 239, 272- 291
4	Mahasiswa mampu memodelkan masalah trasshipment	Masalah Transshipment : Pemodelan dan Tabel Transshipmentnya	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:219-226 B:380-383 C:245- 250, 300- 304
5-6	Mahasiswa dapat menyelesaikan masalah transshipment	Optimisasi masalah Transshipment	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:219-226 B:380-383 C: 245- 250, 300- 304

				1
7-8	Mahasiswa dapat menyelesaikan masalah transshipment mamaksimumkan dan kasus tak setimbang	Optimisasi Masalah Transshipment Memaksimumkan dan Kasus Tak Setimbang	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:219-226 B:380-383 C: 245- 250, 300- 304
9	Mahasiswa mampu memodelkan masalah penugasan	Masalah Penugasan : Pemodelan dan Tabel Penugasannya	Perkuliahan Tatap Muka dan Diskusi	A:214-219 B:372-378 C:240- 244, 293- 300
10-11	Mahasiswa dapat menyelesaikan masalah penugasan dengan Algoritma Hungarian	Optimisasi Masalah Penugasan : Algoritma Hungarian	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:214-219 B:372-378 C: 240- 244, 293- 300
12	Mahasiswa dapat menyelesaikan masalah penugasan memaksimumkan dan kasus penugasan tak seimbang	Masalah Penugasan Memaksimumkan dan Kasus Tak Setimbang	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:214-219 B:372-378 C: 240- 244, 293- 300
13	Mahasiswa mampu memodelkan masalah TSP	Masalah Travelling Salesman (TSP): Pemodelan dan Tabel TSP nya	Perkuliahan Tatap Muka dan Diskusi	A:214-219 C: 240- 244, 293- 300
14-15	Mahasiswa dapat menyelesaikan masalah TSP dengan Algoritma Hungarian	Optimisasi TSP : Algoritma Hungarian	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:214-219 C: 240- 244, 293- 300
16		Ujian Sisipan I		
17-18	Mahasiswa mampu memodelkan masalah Jaringan Kerja dan dapat menyelesaikan masalah pohon perentang minimal	Model Jaringan: Definisi Jaringan dan Masalah Pohon Perentang Minimal	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:269-273 B:394- 395, 442- 445 C:370-373
19-20	Mahasiswa dapat mengoptimalkan masalah Rute Terpendek	Algoritma Rute Terpendek dan Optimisasinya	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:273-280 B:395-400 C:354-363
21	Mahasiswa dapat mengoptimalkan masalah Rute Terpendek dipandang sebagai masalah transshipment	Masalah Rute Terpendek Dipandang sebagai Masalah Transshipment	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:273-280 B:395-400 C:354-363
22-23	Mahasiswa dapat mengoptimalkan masalah arus maksimal	Masalah Arus Maksimal : Algoritma dan Optimisasinya	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:282-291 B:401-415 C:363-370

24-25	Mahasiswa mampu memodelkan masalah penjadwalan proyek dan dapat membuat diagram	Penjadwalan Proyek dengan PERT-CPM : Representasi Diagram Panah	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:449-471 B:415-435 C:381-411
26	panahnya	Ujian Sisipan II		
27-28	Mahasiswa dapat mengoptimalkan panjadwalan proyek dengan CPM dan floatnya	Perhitungan Jalur Kritis dan Float	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:449-471 B:415-435 C:381-411
30-31	Mahasiswa dapat mengoptimalkan penjadwalan proyek dengan PERT Mahasiswa memahami masalah pemrograman dinamik dan contoh- contoh penyelesaiannya	Probabilitas dan Pertimbangan Biaya dalam Penjadwalan Proyek Pemodelan Masalah Pemrograman Dinamik dan Contoh-contoh Model dan Penghitungan	Perkuliahan Tatap Muka, Diskusi, dan Presentasi Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:449-471 B:415-435 C:381-411 A:345-370 B:1003- 1052 C:653-667
32	Mahasiswa dapat menyelesaikan masalah pemrograman linear dengan pemrograman dinamik	Pemrograman Dinamik Penyelesaian Masalah Program Linear Berdasarkan Pemrograman Dinamik	Perkuliahan Tatap Muka, Diskusi, dan Presentasi	A:371-373 B:1003- 1052 C:653-667

IV. REFERENSI / SUMBER BAHAN

A. Wajib	: [A] Taha, Hamdy (1989). Operation Research: an Introduction,
	Collier MacMilan International Edition.

[B] Winston, Wayne L. (1994). *Operations Research: Applications and Algorithms*, 3th Edition, International Thomson Publishing, California..

B. Anjuran : [C] Anderson, D.R., Sweeney, D.J. and William, T.A. (1985). An Introduction to Management Sciences: Qualitative Approach to Decision Making, 4th Edition.

V. EVALUASI

No.	Komponen Evaluasi	Bobot (%)
1	Tugas	10 %
2	Kuis	20 %
3	Ujian Sisipan	25 %
4	Ujian Akhir	45 %
	Jumlah	100 %

Mengetahui, Ketua Jurusan Matematika Yogyakarta, 17 September 2008 Dosen,

<u>Dr. Hartono</u> NIP. 131656357 <u>Caturiyati</u> NIP. 132255128