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– Orthogonality

A term set T = t1,…, tn of a linguistic variable x on 
the universe X is orthogonal if:

Where the ti’s are convex & normal fuzzy sets 
defined on X.
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Fuzzy if-then rules (3.3) (cont.)
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General format:

– If x is A then y is B (where A & B are linguistic values 
defined by fuzzy sets on universes of discourse X & 
Y).

• “x is A” is called the antecedent or premise
• “y is B” is called the consequence or conclusion

– Examples:

• If pressure is high, then volume is small.
• If the road is slippery, then driving is dangerous.
• If a tomato is red, then it is ripe.
• If the speed is high, then apply the brake a little.

Fuzzy if-then rules (3.3) (cont.)
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– Meaning of fuzzy if-then-rules (A  B)

• It is a relation between two variables x & y; therefore it is 
a binary fuzzy relation R defined on X * Y

• There are two ways to interpret A  B:

– A coupled with B
– A entails B

if A is coupled with B then:

or.normoperat-T a is * where
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Fuzzy if-then rules (3.3) (cont.)
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If A entails B then:

R = A  B =  A  B ( material implication)

R = A  B =  A  (A  B) (propositional calculus)

R = A  B = ( A   B)  B (extended propositional 
calculus)
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Fuzzy if-then rules (3.3) (cont.)
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Two ways to interpret “If x is A then y is B”:

A

B

A entails B
y

x

A coupled with B

A

B

x

y

Fuzzy if-then rules (3.3) (cont.)
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• Note that R can be viewed as a fuzzy set with a 
two-dimensional MF

R(x, y) = f(A(x), B(y)) = f(a, b)

With a = A(x), b = B(y) and f called the fuzzy 
implication function provides the membership 
value of (x, y)

Fuzzy if-then rules (3.3) (cont.)
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– Case of “A coupled with B”

(minimum operator proposed by Mamdani, 1975)

(product proposed by Larsen, 1980)

(bounded product operator)
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Fuzzy if-then rules (3.3) (cont.)
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– Case of “A coupled with B” (cont.)

(Drastic operator)
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Fuzzy if-then rules (3.3) (cont.)
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A coupled with B

Fuzzy if-then rules (3.3) (cont.)
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– Case of “A entails B”

(Zadeh’s arithmetic rule by using bounded sum operator for union)

(Zadeh’s max-min rule)
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Fuzzy if-then rules (3.3) (cont.)
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– Case of “A entails B” (cont.)

(Boolean fuzzy implication with max for union)

(Goguen’s fuzzy implication with algebraic product for 
T-norm)
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Fuzzy if-then rules (3.3) (cont.)
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A entails B
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Fuzzy Reasoning (3.4)

Definition

– Known also as approximate reasoning

– It is an inference procedure that derives 
conclusions from a set of fuzzy if-then-rules & 
known facts
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Fuzzy Reasoning (3.4) (cont.)

Compositional rule of inference

– Idea of composition (cylindrical extension & 
projection)

• Computation of b given a & f is the goal of the composition

– Image of a point is a point

– Image of an interval is an interval
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Derivation of y = b from x = a and y = f(x):

a and b: points
y = f(x) : a curve

x

y

a

b

y = f(x)

a

b

y

x

a and b: intervals
y = f(x) : an interval-valued

function

y = f(x)

Fuzzy Reasoning (3.4) (cont.)
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– The extension principle is a special case of 
the compositional rule of inference

• F is a fuzzy relation on X*Y, A is a fuzzy set of X 
& the goal is to determine the resulting fuzzy set 
B

– Construct a cylindrical extension c(A) with base A

– Determine c(A)  F (using minimum operator)

– Project c(A)  F onto the y-axis which provides B

Fuzzy Reasoning (3.4) (cont.)
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a is a fuzzy set and y = f(x) is a fuzzy relation:

cri.m

Fuzzy Reasoning (3.4) (cont.)
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Given A, A  B, infer B

A = “today is sunny”
A  B: day = sunny then sky = blue
infer: “sky is blue”

• illustration

Premise 1 (fact):      x is A
Premise 2 (rule):      if x is A then y is B

Consequence:          y is B

Fuzzy Reasoning (3.4) (cont.)
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Approximation

A’ = “ today is more or less sunny”
B’ = “ sky is more or less blue”

• iIlustration 

Premise 1 (fact):      x is A’
Premise 2 (rule):      if x is A then y is B

Consequence:          y is B’

(approximate reasoning or fuzzy reasoning!)

Fuzzy Reasoning (3.4) (cont.)
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Definition of fuzzy reasoning

Let A, A’ and B be fuzzy sets of X, X, and Y, 
respectively. Assume that the fuzzy implication 
A  B is expressed as a fuzzy relation R on X*Y. Then 
the fuzzy set B induced by “x is A’ ” and the fuzzy rule 
“if x is A then y is B’ is defined by:

Single rule with single antecedent
Rule : if x is A then y is B
Fact: x is A’
Conclusion: y is B’ (B’(y) = [x (A’(x)  A(x)]  B(y)) 

 )y,x(),x(minmax)y( R'A
x

'B 

Fuzzy Reasoning (3.4) (cont.)
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y is B’

Fuzzy Reasoning (3.4) (cont.)
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– Single rule with multiple antecedents
Premise 1 (fact): x is A’ and y is B’
Premise 2 (rule): if x is A and y is B then z is C

Conclusion: z is C’

Premise 2: A*B  C
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– Multiple rules with multiple antecedents

Premise 1 (fact): x is A’ and y is B’
Premise 2 (rule 1): if x is A1 and y is B1 then z is C1

Premise 3 (rule 2): If x is A2 and y is B2 then z is C2

Consequence (conclusion): z is C’

R1 = A1 * B1  C1

R2 = A2 * B2  C2

Since the max-min composition operator o is distributive over the union 
operator, it follows:

C’ = (A’ * B’) o (R1  R2) = [(A’ * B’) o R1]  [(A’ * B’) o R2] = C’1  C’2
Where C’1 & C’2 are the inferred fuzzy set for rules 1 & 2 respectively

Fuzzy Reasoning (3.4) (cont.)
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