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Abstract 
A sub semigroup  of a semigroup  is called a quasi-ideal of  if . A sub 

semigroup  of a semigroup  is called a bi-ideal of  if . For nonempty subset 
Q S S QQSSQ ⊆∩

B S S BBSB ⊆ A  of a 
semigroup ,   and  denote respectively the quasi-ideal and bi-ideals of  generated by S ( )qA ( )bA S A . Let 

 denote the class of all semigroup whose bi-ideals are quasi-ideals. Let  be a module over a 
division ring  and  be a semigroup under composition of all homomorphisms 
BQ DM

D )( DMHom

DD MM →:α .  The semigroup is a regular semigroup.  )( DMHom
 In this paper we will survey which sub semigroups of   whose the quasi-ideals are bi-
ideals.  

)( DMHom
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I. Introduction 

The notion of quasi-ideal for semigroup 
was introduced by O. Steinfeld, 4), in 1956. 
Although bi-ideals are a generalization of quasi-
ideals, the notion of bi-ideal was introduced earlier 
by R>A Good and D.R Hughes in 1952.   

A sub semigroup  of a semigroup  is 
called a quasi-ideal of  if . A sub 
semigroup  of a semigroup  is called a bi-
ideal of  if . Then Quasi-ideals are a 
neralization of left ideals and right ideals and bi-
ideals  are a generalization of quasi-ideals. 

Q S
S QQSSQ ⊆∩

B S
S BBSB ⊆

 O. Steinfeld  has defined  a bi-ideal and 
quasi-ideal as follows: For nonempty subset A  of 
a semigroup , the quasi-ideal  of S  
generated by 

S ( )qA
A  is the intersection of all quasi-

ideal of  containing S A and bi-ideal ( )bA  of S  
generated by A  is the intersection of all bi-ideal 
of  containing S A  .1). 

 We use the symbol  to denote a 
semigroup  with an identity, otherwise, a 
semigroup  with an identity 1 adjoined . 4). A.H. 
Clifford and G.H. Preston in 1) have proved that  

1S
S

S

Proposition 1.1. ([1], page 133) For a nonempty 
subset A  of a semigroup ,  S

( ) ( ) AASSAASASA q ∪∩=∩= 11  
 

Proposition 1.2. ([1], page 133) For a nonempty 
subset A  of a semigroup ,  S

( ) ( ) ( ) 21 AAASAAAASA b ∪∪=∪=  
 
By these definitions, ( )qA and  are the 
smallest quasi-ideal and bi-ideal, respectively,  of 

 containing 

( )bA

S A . Since every quasi- ideal of  S  is 
a bi-ideal, it follows that for a nonempty subset  
A  of , S ( )bA ⊆ ( )qA . Hence, if ( )  is a quasi-

ideal of , then 
bA

S ( )bA = ( )qA , then we have: 
Proposition 1.3. ([1], page 134)  If A  is a 
nonempty subset of  a semigroup  such that S
( )bA ≠ ( )qA , then  ( )bA  is a bi-ideal of  which 
is not a quasi-ideal. 

S

 S Lajos has defined a , that is the 
class of all semigroup whose bi-ideals are quasi-
ideals. He has proved that: 

BQ

Proposition 1.4. ([5], page 238)  Every regular 
semigroup is a -semigroup. BQ

The next proposition  is given by K.M 
Kapp in 5).  
Proposition 1.5. ([5], page 238)  Every left [right] 
simple semigroup and every left [ right] 0-simple 
semigroup is a  -semigroup.  BQ
 In fact, J.Calais has characterized -
semigroups in 5) as follows 

BQ



Proposition 1.6. ([5], page 238)  A semigroup   
is a -semigroup if and only if 

S
BQ ( ) ( )bq yxyx ,, =   

for all  Syx ∈,
 Let  be a module over a division 

ring  and  be a semigroup under 
composition of all homomorphisms 

DM
D )( DMHom

DD MM →:α .  The semigroup is a 
regular semigroup. 6).  

)( DMHom

 
 
II. Main Results 

Let  be a set of all bijective 
homomorphisms of  , i.e.: 

( DMIs )
)( DMHom

( ) { } aisomorfisman  is )( αα DD MHomMIs ∈=  
The  is a regular semigroup, because for 

all 

( DMIs )
)( DMIs∈α , there is an ( )DMIs∈= −1' αα  

such that αααααα oooo 1' −= α= . By 
Proposition 1.4.  the semigroup  is in 

.  
( DMIs )

)

BQ
 The next, we construct some subsets of  

as follow: ( DMHom
( ) ( ){ } injective  is αα DD MHomMIn ∈=  

( ) ( ){ }VRanMHomMSur DD =∈= αα  

( ) ( ) ( ){ }infinite is \dim αα RanVMHomMOSur DD ∈=

( ) ( ){ } infinite is Ker dim αα DD MHomMOIn ∈=
 
 

( ) ( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈=
infinite isRan\dim

injective, is 
α

α
α

V
MHomMBHom DD

 
By these definitions, so we get: 

 , . The 
and  are sub semigroups of 

: 

( )DMIs ( )DMIn⊂ ( )DMIs ( DMSur⊂ )
) )( DMIn ( DMSur

( )DMHom
If βα , ∈ ( DMIn ) , then }0{=αKer , }0{=βKer . 
From this condition, we have , such that ( )DMIn  
is a sub semigroup of  ( )DMHom
If βα , ∈ ( DMSur ) ,then VRan =α ,  VRan =β . 
From these conditions, we have ( )βα oRanV = , 
such that the  is a sub semigroup of 

. 
( DMSur )

)
)

( )DMHom
 The  is a semigroup of  

, it is caused by: 
( DMOSur

( DMHom

If βα , ∈ ( )DMOSur , so ( )αRanV \dim  and 
( )βRanV \dim  are infinite. For ( )βα oRanx∈ , 

there is Vy∈  such that ( ) xy =βα o)(  or 
( ) xy =βα)( . So, βRanx∈  and we conclude that  

( ) ββα RanRan ⊆o , so ( )βα o(\dim RanV  is 
infinite.  
 The ( )DMBHom  is a  sub semigroup of  

( )DMHom : 
If βα , ∈ ( )DMBHom , then βα ,  are injective and 
the ( )αRanV \dim  and ( )βRanV \dim  are 
infinite. By the previous proofing, so  

( ))(\dim βα oRanV are infinite and ( )βα o  is 
bijective 

In order to prove that . and ( DMIn )
( )DMSur  are in  if and only if  is 

finite,  we need this Lemma: 
BQ Vdim

Lemma 2.1. ([2], page 407) If  is a basis of 
,  and 

B
DM BA ⊆ ( DMHom )∈α  is one-to-one, 

then  
( )αα ARan /dim AB \=  

 From this Lemma, so we can prove that: 
Theorem 2.2. ([2], page 408)  if 
and only if  is finite.  

( ) BQMIn D ∈

DMdim
Proof:  
If  is finite, then = .  So, DMdim ( )DMIn ( DMIs )
( )DMIn  is a regular semigroup. By Proposition 

1.4.   ( ) BQMIn D ∈ . 
The other side, assume that  is infinite.  

Let 
DMdim

B  be a basis of , so DM B  is infinite. Let 

{ }NnuA n ∈=  is a subset of B , where for any 

distinct Nji ∈, , ji uu ≠ . 

Let ( )DMHom∈γβα ,,  be defined as follow:  

⎩
⎨
⎧

∈
∈=

=
ABvv

Nnuvu
v nn

\  if
  somefor   if

)( 2α  

 

⎩
⎨
⎧

∈
∈=

= +

ABvv
Nnuvu

v nn
\  if

  somefor    if
)( 1β  

 

⎩
⎨
⎧

∈
∈=

= +

ABvv
Nnuvu

v nn
\ if

 somefor   if
)( 2γ  

By this definition, so { }0kerkerker === γβα , 
such that ( )DMIn∈γβα ,, . Next, we have 
( )( ) ( )( )γααβ •= nn uu o , for all  and for all Nn∈

ABv \∈ , we have ( )( ) ( ) ( ) vvvv === ααβαβ )(o   



and ( )( ) ( ) ( ) vvvv === γγαγα )(o . So we 
conclude that γααβα oo =≠ . By this 
conditions we have ( )ααβ DMIn∈o , because 

( DMIn∈ )β and  ( DMIn )αγα ∈o . We know 
that γααβ oo = , so  by the Proposition 1.1 we 
have  ( ) ( )DD MInMIn αααβ ∩∈o ( )qα= . 

Suppose that ( )qααβ ∈o , because  αβα o≠ , 

by Proposition 1.1 we get  ( )αααβ DMIn∈o .  
Let ( DMIn∈ )λ  such that αλααβ ooo = . 
Sinceα is  injective, so αλβ o= .  Then we have:  

{ }1\ uB ( ) ( ) { }( )λλαλαβ NnuBBBB n ∈==== −12\o  
By Lemma 2.1, we have: 

{ }( ) { }NnuNnuBRan nn ∈=∈ −− 1212 )\(/dim λλ

From these conditions, so this condition is hold:  
{ }( ) { }NnuuBRan n ∈= −121\/dim λ , but in the 

other hand : 
{ }( ) { }( ) 1\/dim\/dim 11 =≤ uBVuBRanλ . 

So, there is a contradiction. By Proposition 1.3, we 
have  ( )bααβ ∉o , then . ( ) BQMIn D ∉
 
Theorem 2.3. ([2], page 408) ( )DMSur QB∈  if 
and only if  is finite ( DMHomdim )

)

)

)

)
)

)

)

)

Proof: 
The proof of this theorem is similar with the 
previous theorem.   
 
The other semigroups e.i.  a  always  
belongs to  but it is not regular and is neither 
right 0-simple nor left 0-simple, if   is 
finite. These condition is guarantied by these 
propositions: 

( DMOSur
BQ

DMdim

Propositions 2.4. ([2], page 409) The semigroup 
 isn’t regular. ( DMOSur

Propositions 2.5. ([2], page 410) The semigroup 
 is neither right 0-simple nor left 0-

simple. 
( DMOSur

 Although  has properties 
likes above,  is a left ideal of 

 and is always in .  

( DMOSur
( DMOSur

( DMHom BQ
 For the other semigroup, i.e. 

 is in  if and only if   is 
countably infinite. It is caused by this  lemma: 

( DMBHom BQ DMdim

Lemma 2.6. ([2], page 411) If  is 
countably infinite , then  is right 
simple.   

DMdim
( DMBHom

 The next, we construct  the other subsets 
of ( )DMHom :  

( )DMOInSur
( ) ( ){ }infinite are \dim,dim ααα RanVKerMHom D∈=

( )DMOBHom
( ){ }infinite is dim, ααα KerMRanMHom DD =∈=

 From the definition, we get: 
( )DMOInSur = ( ) ( DD MOInMOSur ∩ ) , this  set 

is not empty set, because 
∈0 ( ) ( )DD MOInMOSur ∩ = . This 

set is a sub semigroup of .   
( DMOInSur )

)

( )DMHom
Lemma 2.7. ([5], page 240)  For every infinite 
dimention of ,  is a regular sub 
semigroup of 

DM ( DMOInSur
( )DMHom  

The following theorem is the corollary of 
the previous  lemma: 
Theorem 2.8. ([5], page 240)  For every infinite 
dimention of ,  is in  DM ( DMOInSur ) BQ

The set ( )DMOBHom  is an intersection 
of  ( )DMIn  and ( )DMOSur .  Let  be a basis 
of  , since  is infinite, there is a subset 

B

DM B A of 
 such that B BABA == \ . Then there exist a 

bijection BA→:ϕ . Define  a homomorphisms in 
( )DMHom  as follow: 

( ) ( )
⎩
⎨
⎧

∈
∈

=
ABvif
Avifv

v
\0

ϕ
α  

Hence ∈α ( )DMOBHom  
Lemma 2.9. ([5], page 241).   If  is 
countably infinite, then  is left 
simple. 

DMdim
( DMOBHom )

 
As the corollary, we get: 
Theorem 2.10. ([5], page 242). The smeigroup 

( )DMOBHom  is in  if and only if  is 
countably infinite.  

BQ DMdim

 
  
III. Conclusion 
 From this survey, we can conclude that  
there is a different conditions such that the sub 
semigroup of  ( )DMHom  is in , i.e: BQ
1. ( ) BQMIn D ∈  if and only if  is 

finite.  
DMdim

2. ( )DMSur QB∈  if and only if 
( )DMHomdim  is finite 

3. The semigroup ( )DMOSur  isn’t regular. 



4. The semigroup  is neither right 0-
simple nor left 0-simple. 

( DMOSur )

)

)

)

)
)

5. If  is countably infinite , then 
 is right simple.   

DMdim
( DMBHom

6. For every infinite dimension of , 
 is a regular sub semigroup of 

 

DM
( DMOInSur

( )DMHom
7. For every infinite dimention of , 

 is in  
DM

( DMOInSur BQ
8. If  is countably infinite, then 

 is left simple. 
DMdim

( DMOBHom
9. The smeigroup  is in  if 

and only if  is countably infinite.  
( DMOBHom BQ

DMdim
10. Finally, we can conclude that  not every   

semigroup  in  is a regular semigroup and 
not every   semigroup  in  is either right 
0-simple or left 0-simple. 

BQ
BQ
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