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Abstract

A sub semigroup Q of a semigroup S is called a quasi-ideal of S if SQNQS<Q. A sub
semigroup B of a semigroup S is called a bi-ideal of S if BSB < B. For nonempty subset A of a
semigroup S, (A), and (A), denote respectively the quasi-ideal and bi-ideals of S generated by A. Let

BQ denote the class of all semigroup whose bi-ideals are quasi-ideals. Let Mp be a module over a

division ring D and

Hom(Mp)be a semigroup under composition of all homomorphisms

a:Mp —> Mp. The semigroup Hom(M p) is a regular semigroup.
In this paper we will survey which sub semigroups of Hom(M p) whose the quasi-ideals are bi-

ideals.
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I. Introduction

The notion of quasi-ideal for semigroup
was introduced by O. Steinfeld, 4), in 1956.
Although bi-ideals are a generalization of quasi-
ideals, the notion of bi-ideal was introduced earlier
by R>A Good and D.R Hughes in 1952.

A sub semigroup Q of a semigroup S is
called a quasi-ideal of S if SQNQS < Q. Asub

semigroup B of a semigroup S is called a bi-
ideal of S if BSB < B. Then Quasi-ideals are a
neralization of left ideals and right ideals and bi-
ideals are a generalization of quasi-ideals.

O. Steinfeld has defined a bi-ideal and
quasi-ideal as follows: For nonempty subset A of
a semigroup S, the quasi-ideal (A)q of S

generated by A is the intersection of all quasi-
ideal of S containing Aand bi-ideal (A), of S

generated by A is the intersection of all bi-ideal
of S containing A .1).

We use the symbol s' to denote a
semigroup S with an identity, otherwise, a
semigroup S with an identity 1 adjoined . 4). A.H.
Clifford and G.H. Preston in 1) have proved that
Proposition 1.1. ([1], page 133) For a nonempty
subset A of a semigroup S,

(A)y =S'An A =(SAN AS)U A

Proposition 1.2. ([1], page 133) For a nonempty
subset A of a semigroup S,

(A), = (ASlA)u A=(ASA)U AU A2

By these definitions, (A);and (A), are the

smallest quasi-ideal and bi-ideal, respectively, of
S containing A . Since every quasi- ideal of S is
a bi-ideal, it follows that for a nonempty subset
A of S, (A), = (A)g. Hence, if (A), is a quasi-

ideal of S, then (A), =(A); , then we have:

Proposition 1.3. ([1], page 134) If A is a
nonempty subset of a semigroup S such that

(A)o # (A)y. then (A), is a bi-ideal of S which

is not a quasi-ideal.
S Lajos has defined a BQ, that is the

class of all semigroup whose bi-ideals are quasi-
ideals. He has proved that:
Proposition 1.4. ([5], page 238) Every regular
semigroup is a BQ -semigroup.

The next proposition is given by K.M
Kapp in 5).
Proposition 1.5. ([5], page 238) Every left [right]
simple semigroup and every left [ right] 0-simple
semigroup isa BQ -semigroup.

In fact, J.Calais has characterized BQ -
semigroups in 5) as follows



Proposition 1.6. ([5], page 238) A semigroup S
is a BQ -semigroup if and only if (x,y), =(x, y),
forall x,yeS

Let Mp be a module over a division
ring D and Hom(Mp)be a semigroup under

composition of all homomorphisms
a:Mp —>Mp. The semigroup Hom(Mp)is a
regular semigroup. 6).

Il. Main Results
Let Is(Mp) be a set of all bijective

homomorphisms of Hom(Mp ) , i.e.:

15(M p ) = { € Hom(M p)| e s an isomorfisma }
The Is(M D) is a regular semigroup, because for
all aels(Mp), there is an a'=atels(Mp)

such that aoaa=aca toa=a. By
Proposition 1.4. the semigroup Is(Mp) is in

BQ.
The next, we construct some subsets of
Hom(M p )as follow:

In(Mp )= { e Hom(M p )| s injective }
sur(Mp )= fo € Hom(M p)| Rana =V
0sufMp )= {a € HomMp, )| dim{V/ \ Rana)isinfinite
OIn(Mp )= {a € Hom(M p )| dim Kere is infinite |

BHom{Mp) = {a e Hom(Mp)

aisinjective,
dimV \ Rana)isinfinit

By  these definitions, SO we get:
IsS(Mp)cIn(Mp) , I1s(Mp)cSur(Mp). The

In(Mp)and Sur(Mp) are sub semigroups of
Hom(Mp ):
If a,8€In(Mp), then Kerar ={0}, Kerp={0}.
From this condition, we have , such that In(M )
is a sub semigroup of Hom(M )
If &, € Sur(Mp),then Rana =V, Rang=V .
From these conditions, we have V = Ran(a o ),
such that the Sur(Mp) is a sub semigroup of
Hom(Mp ).

The OSur(Mp) is a semigroup of
Hom(Mp ), it is caused by:

If a8 e0Sur(Mp), so dim(V\Rana) and
dim(vV \ Rang) are infinite. For x < Ran(a ° ),
there is yeV such that (y)@op)=x or
((y)a)B=x. So,xeRang and we conclude that
Ran(e o B)c Rang, so dim(V \Ran(ao f) is
infinite.

The BHom(M ) is a sub semigroup of
Hom(Mp ):
If e, f € BHom(M p ), then «, /3 are injective and
the dim(V \Ranaz) and dim(V \Rang) are
infinite. By the previous proofing, so
dim(V \ Ran(a - ))are infinite and (o) is
bijective

In order to prove that . In(Mp)and
Sur(Mp) are in BQ if and only if dimV is
finite, we need this Lemma:
Lemma 2.1. ([2], page 407) If B is a basis of
Mp, AcB and aeHom(Mp) is one-to-one,
then

dim(Rana /(A)a) =[B\ A

From this Lemma, so we can prove that:
Theorem 2.2. ([2], page 408) In(Mp)eBQ if
and only if dim M p is finite.
Proof:
If dimMp is finite, then In(Mp)=1s(Mp). So,
In(Mp ) is a regular semigroup. By Proposition
14. In(Mp)eBQ.
The other side, assume that dimMp is infinite.

Let B be a basis of Mp, so [B| is infinite. Let
A= {un| ne N} is a subset of B, where for any
distinct i, je N, u; #Uj.

Let &, 8,7 € Hom(M p ) be defined as follow:

V) up, Iif v=u,forsome neN
a =
v if veB\A
(V) = Upy i v=u, forsome neN
| v if veB\A

(v);/:{ur”z _if v=u, forsomeneN
v ifveB\A

By this definition, so ker & = ker 8 = ker y = {0},
such that «,f8,7<In(Mp). Next, we have
(un XBoa)=(u,Naey), forall neN and for all
veB\A, we have (V)foa)=((v)B)a=(V)a=v



and  (Vaoy)=(Wa)y=(v)r=v. So we
conclude that a#pfoca=aoy. By this
conditions we have BoaeIn(Mp)a, because
Bein(Mp)and aoyealn(Mp). We know
that foa=aoy,so by the Proposition 1.1 we
have Boae(Mplanan(Mp) =(a),.
Suppose that foa e (a)q , because a = foa,

by Proposition 1.1 we get BoacaIn(Mp)a.
Let AeIn(Mp) such that Boa=aocloa.
Since ar is injective, so f=Aoa . Then we have:;
B\{u1} =BB=B(ao4)=(Ba)i=(B\{ugna|neN i
By Lemma 2.1, we have:

dim(RaM/((B \ {u2n,1| ne N)}/l}): |{u2n,1| ne N}|
From these conditions, so this condition is hold:
dim(Ranl/(B\{u1}>):|{u2n_1| ne N}|, but in the
other hand :

dim(Ran /(B \ {uy }))<dim{v /(B \ {u }))=1.

So, there is a contradiction. By Proposition 1.3, we
have foa¢(a),,then IN(Mp)e BQ.

Theorem 2.3. ([2], page 408) Sur(Mp)eBQ if
and only if dim Hom(M p ) is finite
Proof:

The proof of this theorem is similar with the
previous theorem.

The other semigroups e.i. OSur(Mp) a always
belongs to BQ but it is not regular and is neither
right O-simple nor left O0-simple, if dimMp is
finite. These condition is guarantied by these
propositions:

Propositions 2.4. ([2], page 409) The semigroup
oSur(M p ) isn’t regular.

Propositions 2.5. ([2], page 410) The semigroup
OSur(Mp ) is neither right O-simple nor left 0-

simple.

Although OSur(Mp) has properties
likes above, OSur(Mp) is a left ideal of
Hom(M p ) and is always in BQ.

For the other  semigroup, i.e.
BHom(Mp ) isin BQ ifand only if dimMp is
countably infinite. It is caused by this lemma:
Lemma 2.6. ([2], page 411) If dimMp is
countably infinite, then BHom(Mp) is right
simple.

The next, we construct the other subsets
of Hom(Mp ):

OlnSur(Mp)

= {& e Hom(M p ) dim Kera, dim(V \ Rane)areinfinite}

OBHom(Mp)

= { e Hom(M p | Rana =M p, dim Keraris infinite]
From the definition, we get:

OlInSur(M p )=0Sur(M 5 ) OIn(Mp ), this set

is not empty set, because
0e 0Sur(M p ) O0In(M  )=0InSur(M p ). This

set is a sub semigroup of Hom(Mp ).

Lemma 2.7. ([5], page 240) For every infinite
dimention of M p, OInSur(M D) is a regular sub

semigroup of Hom(M )

The following theorem is the corollary of
the previous lemma:
Theorem 2.8. ([5], page 240) For every infinite

dimention of M, OInSur(M p ) is in BQ

The set OBHom(M p ) is an intersection
of In(Mp) and OSur(Mp). Let B be a basis
of Mp,since B isinfinite, there is a subset A of
B such that |A/=|B\ A =|B|. Then there exist a
bijection ¢: A— B . Define a homomorphisms in
Hom(M p ) as follow:

v) if veA

(V)O’:{g)( ?f veB\A
Hence o € OBHom(M )
Lemma 2.9. ([5], page 241). If dimMp is
countably infinite, then OBHom(Mp) is left
simple.

As the corollary, we get:

Theorem 2.10. ([5], page 242). The smeigroup
OBHom(Mp ) isin BQ ifand only if dimM is
countably infinite.

I11. Conclusion
From this survey, we can conclude that
there is a different conditions such that the sub

semigroup of Hom(Mp ) isin BQ, i.e:

1. In(Mp)eBQ if and only if dimMp is
finite.

2. Sur(Mp)eBQ if and only if
dim Hom(M p ) is finite

3. The semigroup OSur(M p ) isn’t regular.



10.

The semigroup OSur(M ) is neither right 0-

simple nor left 0-simple.
If dim M is countably infinite , then

BHom(M p ) is right simple.

For every infinite dimension of Mp,
OInSur(M p ) is a regular sub semigroup of
Hom(Mp)

For every infinite dimention of Mp),
OInSur(Mp ) isin BQ

If dimMp is countably infinite, then
OBHom(M ) is left simple.

The smeigroup OBHom(Mp ) is in BQ if
and only if dim M p is countably infinite.

Finally, we can conclude that not every
semigroup in BQ is a regular semigroup and

not every semigroup in BQ is either right
0-simple or left 0-simple.
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