Survey of Linear Transformation Semigroups Whose The Quasi-ideals are Bi-ideals

Karyati1,Sri Wahyuni2

1 Department of Mathematics Education, Faculty Of Mathematics and Natural Sciences, Yogyakarta State University

2 Department of Mathematics Education, Faculty Of Mathematics and Natural Sciences,

Gadjah Mada University

Abstract

A sub semigroup Q of a semigroup S is called a quasi-ideal of S if $SQ \cap QS \subseteq Q$. A sub semigroup B of a semigroup S is called a bi-ideal of S if $BSB \subseteq B$. For nonempty subset A of a semigroup S, $(A)_q$ and $(A)_b$ denote respectively the quasi-ideal and bi-ideals of S generated by A. Let BQ denote the class of all semigroup whose bi-ideals are quasi-ideals. Let M_D be a module over a division ring D and $Hom(M_D)$ be a semigroup under composition of all homomorphisms $\alpha: M_D \to M_D$. The semigroup $Hom(M_D)$ is a regular semigroup.

In this paper we will survey which sub semigroups of $Hom(M_D)$ whose the quasi-ideals are biideals.

Keywords : Semigroup, BQ, quasi-ideal, bi-ideal

I. Introduction

The notion of quasi-ideal for semigroup was introduced by O. Steinfeld, 4), in 1956. Although bi-ideals are a generalization of quasi-ideals, the notion of bi-ideal was introduced earlier by R>A Good and D.R Hughes in 1952.

A sub semigroup Q of a semigroup S is called a quasi-ideal of S if $SQ \cap QS \subseteq Q$. A sub semigroup B of a semigroup S is called a biideal of S if $BSB \subseteq B$. Then Quasi-ideals are a neralization of left ideals and right ideals and biideals are a generalization of quasi-ideals.

O. Steinfeld has defined a bi-ideal and quasi-ideal as follows: For nonempty subset A of a semigroup S, the quasi-ideal $(A)_q$ of S generated by A is the intersection of all quasi-ideal of S containing A and bi-ideal $(A)_b$ of S generated by A is the intersection of all bi-ideal of S containing A.1).

We use the symbol S^1 to denote a semigroup *S* with an identity, otherwise, a semigroup *S* with an identity 1 adjoined . 4). A.H. Clifford and G.H. Preston in 1) have proved that

Proposition 1.1. ([1], page 133) For a nonempty subset A of a semigroup S,

$$(A)_q = S^1 A \cap AS^1 = (SA \cap AS) \cup A$$

Proposition 1.2. ([1], page 133) For a nonempty subset A of a semigroup S,

$$(A)_b = (AS^1A) \cup A = (ASA) \cup A \cup A^2$$

By these definitions, $(A)_q$ and $(A)_b$ are the smallest quasi-ideal and bi-ideal, respectively, of *S* containing *A*. Since every quasi-ideal of *S* is a bi-ideal, it follows that for a nonempty subset *A* of *S*, $(A)_b \subseteq (A)_q$. Hence, if $(A)_b$ is a quasi-ideal of *S*, then $(A)_b = (A)_q$, then we have:

Proposition 1.3. ([1], page 134) If A is a nonempty subset of a semigroup S such that $(A)_b \neq (A)_q$, then $(A)_b$ is a bi-ideal of S which is not a quasi-ideal.

S Lajos has defined a BQ, that is the class of all semigroup whose bi-ideals are quasi-ideals. He has proved that:

Proposition 1.4. ([5], page 238) Every regular semigroup is a *BQ*-semigroup.

The next proposition is given by K.M Kapp in 5).

Proposition 1.5. ([5], page 238) Every left [right] simple semigroup and every left [right] 0-simple semigroup is a *BQ*-semigroup.

In fact, J.Calais has characterized BQ - semigroups in 5) as follows

Proposition 1.6. ([5], page 238) A semigroup *S* is a *BQ* -semigroup if and only if $(x, y)_q = (x, y)_b$ for all $x, y \in S$

Let M_D be a module over a division ring D and $Hom(M_D)$ be a semigroup under composition of all homomorphisms $\alpha: M_D \to M_D$. The semigroup $Hom(M_D)$ is a regular semigroup. 6).

II. Main Results

Let $Is(M_D)$ be a set of all bijective homomorphisms of $Hom(M_D)$, i.e.: $Is(M_D) = \{ \alpha \in Hom(M_D) \mid \alpha \text{ is an isomorfisma} \}$ The $Is(M_D)$ is a regular semigroup, because for all $\alpha \in Is(M_D)$, there is an $\alpha' = \alpha^{-1} \in Is(M_D)$ such that $\alpha \circ \alpha' \circ \alpha = \alpha \circ \alpha^{-1} \circ \alpha = \alpha$. By **Proposition 1.4.** the semigroup $Is(M_D)$ is in BQ.

The next, we construct some subsets of $Hom(M_D)$ as follow:

 $In(M_D) = \{ \alpha \in Hom(M_D) \mid \alpha \text{ is injective} \}$ $Sur(M_D) = \{ \alpha \in Hom(M_D) \mid Ran\alpha = V \}$ $OSur(M_D) = \{ \alpha \in Hom(M_D) \mid \dim(V \setminus Ran\alpha) \text{ is infinite} \}$ $OIn(M_D) = \{ \alpha \in Hom(M_D) \mid \dim \operatorname{Ker} \alpha \text{ is infinite} \}$

$$BHom(M_D) = \begin{cases} \alpha \in Hom(M_D) \\ \dim(V \setminus \operatorname{Ran}\alpha) \text{ is infinite} \end{cases}$$

By these definitions, so we get: $Is(M_D) \subset In(M_D)$, $Is(M_D) \subset Sur(M_D)$. The $In(M_D)$ and $Sur(M_D)$ are sub semigroups of $Hom(M_D)$:

If $\alpha, \beta \in In(M_D)$, then $Ker\alpha = \{0\}$, $Ker\beta = \{0\}$. From this condition, we have , such that $In(M_D)$ is a sub semigroup of $Hom(M_D)$

If $\alpha, \beta \in Sur(M_D)$, then $Ran\alpha = V$, $Ran\beta = V$. From these conditions, we have $V = Ran(\alpha \circ \beta)$, such that the $Sur(M_D)$ is a sub semigroup of $Hom(M_D)$.

The $OSur(M_D)$ is a semigroup of $Hom(M_D)$, it is caused by:

If $\alpha, \beta \in OSur(M_D)$, so dim $(V \setminus Ran\alpha)$ and dim $(V \setminus Ran\beta)$ are infinite. For $x \in Ran(\alpha \circ \beta)$, there is $y \in V$ such that $(y)(\alpha \circ \beta) = x$ or $((y)\alpha)\beta = x$. So, $x \in Ran\beta$ and we conclude that $Ran(\alpha \circ \beta) \subseteq Ran\beta$, so dim $(V \setminus Ran(\alpha \circ \beta))$ is infinite.

The $BHom(M_D)$ is a sub semigroup of $Hom(M_D)$:

If $\alpha, \beta \in BHom(M_D)$, then α, β are injective and the dim $(V \setminus Ran\alpha)$ and dim $(V \setminus Ran\beta)$ are infinite. By the previous proofing, so dim $(V \setminus Ran(\alpha \circ \beta))$ are infinite and $(\alpha \circ \beta)$ is bijective

In order to prove that . $In(M_D)$ and $Sur(M_D)$ are in BQ if and only if dim V is finite, we need this Lemma:

Lemma 2.1. ([2], page 407) If *B* is a basis of M_D , $A \subseteq B$ and $\alpha \in Hom(M_D)$ is one-to-one, then

$$\dim(\operatorname{Ran}\alpha/\langle A\rangle\alpha) = |B \setminus A|$$

From this Lemma, so we can prove that: **Theorem 2.2.** ([2], page 408) $In(M_D) \in BQ$ if and only if dim M_D is finite. Proof:

If dim M_D is finite, then $In(M_D) = Is(M_D)$. So, $In(M_D)$ is a regular semigroup. By **Proposition 1.4.** $In(M_D) \in BQ$.

The other side, assume that dim M_D is infinite. Let B be a basis of M_D , so |B| is infinite. Let $A = \{u_n \mid n \in N\}$ is a subset of B, where for any distinct $i, j \in N$, $u_i \neq u_j$.

Let $\alpha, \beta, \gamma \in Hom(M_D)$ be defined as follow:

$$(v)\alpha = \begin{cases} u_{2n} & \text{if } v = u_n \text{ for some } n \in N \\ v & \text{if } v \in B \setminus A \end{cases}$$

$$(v)\beta = \begin{cases} u_{n+1} & \text{if } v = u_n \text{ for some } n \in N \\ v & \text{if } v \in B \setminus A \end{cases}$$

$$(v)\gamma = \begin{cases} u_{n+2} & \text{if } v = u_n \text{ for some } n \in N \\ v & \text{if } v \in B \setminus A \end{cases}$$

By this definition, so $\ker \alpha = \ker \beta = \ker \gamma = \{0\}$, such that $\alpha, \beta, \gamma \in In(M_D)$. Next, we have $(u_n)(\beta \circ \alpha) = (u_n)(\alpha \bullet \gamma)$, for all $n \in N$ and for all $v \in B \setminus A$, we have $(v)(\beta \circ \alpha) = ((v)\beta)\alpha = (v)\alpha = v$

 $(v)(\alpha \circ \gamma) = ((v)\alpha)\gamma = (v)\gamma = v$. and So we conclude that $\alpha \neq \beta \circ \alpha = \alpha \circ \gamma$. By this conditions we have $\beta \circ \alpha \in In(M_D)\alpha$, because $\beta \in In(M_D)$ and $\alpha \circ \gamma \in \alpha In(M_D)$. We know that $\beta \circ \alpha = \alpha \circ \gamma$, so by the **Proposition 1.1** we $\beta \circ \alpha \in In(M_D) \alpha \cap \alpha In(M_D) = (\alpha)_a.$ have Suppose that $\beta \circ \alpha \in (\alpha)_a$, because $\alpha \neq \beta \circ \alpha$, by **Proposition 1.1** we get $\beta \circ \alpha \in \alpha \ln(M_D)\alpha$. Let $\lambda \in In(M_D)$ such that $\beta \circ \alpha = \alpha \circ \lambda \circ \alpha$. Since α is injective, so $\beta = \lambda \circ \alpha$. Then we have: $B \setminus \{u_1\} = B\beta = B(\alpha \circ \lambda) = (B\alpha)\lambda = (B \setminus \{u_{2n-1} \mid n \in N\})\lambda$ By **Lemma 2.1**, we have:

 $\dim \left(\operatorname{Ran} \lambda / \langle (B \setminus \{ u_{2n-1} | n \in N) \} \lambda \rangle \right) = \left| \{ u_{2n-1} | n \in N \} \right|$ From these conditions, so this condition is hold:

 $\dim(\operatorname{Ran}\lambda/\langle B \setminus \{u_1\}\rangle) = |\{u_{2n-1} | n \in N\}|, \text{ but in the other hand :}$

$$\dim(\operatorname{Ran}\lambda/\langle B\setminus\{u_1\}\rangle) \leq \dim(V/\langle B\setminus\{u_1\}\rangle) = 1.$$

So, there is a contradiction. By Proposition 1.3, we have $\beta \circ \alpha \notin (\alpha)_b$, then $In(M_D) \notin BQ$.

Theorem 2.3. ([2], page 408) $Sur(M_D) \in BQ$ if and only if dim $Hom(M_D)$ is finite

Proof:

The proof of this theorem is similar with the previous theorem.

The other semigroups e.i. $OSur(M_D)$ a always belongs to BQ but it is not regular and is neither right 0-simple nor left 0-simple, if dim M_D is finite. These condition is guarantied by these propositions:

Propositions 2.4. ([2], page 409) The semigroup $OSur(M_D)$ isn't regular.

Propositions 2.5. ([2], page 410) The semigroup $OSur(M_D)$ is neither right 0-simple nor left 0-simple.

Although $OSur(M_D)$ has properties likes above, $OSur(M_D)$ is a left ideal of $Hom(M_D)$ and is always in BQ.

For the other semigroup, i.e. $BHom(M_D)$ is in BQ if and only if $\dim M_D$ is countably infinite. It is caused by this lemma:

Lemma 2.6. ([2], page 411) If dim M_D is countably infinite, then $BHom(M_D)$ is right simple.

The next, we construct the other subsets of $Hom(M_D)$:

 $OInSur(M_D)$

 $= \{ \alpha \in Hom(M_D) | \dim Ker\alpha, \dim(V \setminus Ran\alpha) \text{ are infinite} \}$ $OBHom(M_D)$

 $= \left\{ \alpha \in Hom(M_D) \mid Ran\alpha = M_D, \dim Ker\alpha \text{ is infinite} \right\}$ From the definition, we get:

 $OInSur(M_D) = OSur(M_D) \cap OIn(M_D)$, this set is not empty set, because $0 \in OSur(M_D) \cap OIn(M_D) = OInSur(M_D)$. This set is a sub semigroup of $Hom(M_D)$.

Lemma 2.7. ([5], page 240) For every infinite dimention of M_D , $OInSur(M_D)$ is a regular sub semigroup of $Hom(M_D)$

The following theorem is the corollary of the previous lemma:

Theorem 2.8. ([5], page 240) For every infinite dimension of M_D , $OInSur(M_D)$ is in BQ

The set $OBHom(M_D)$ is an intersection of $In(M_D)$ and $OSur(M_D)$. Let B be a basis of M_D , since B is infinite, there is a subset A of B such that $|A| = |B \setminus A| = |B|$. Then there exist a bijection $\varphi: A \to B$. Define a homomorphisms in $Hom(M_D)$ as follow:

$$(v)\alpha = \begin{cases} \varphi(v) & \text{if } v \in A \\ 0 & \text{if } v \in B \setminus A \end{cases}$$

Hence $\alpha \in OBHom(M_D)$

Lemma 2.9. ([5], page 241). If dim M_D is countably infinite, then $OBHom(M_D)$ is left simple.

As the corollary, we get:

Theorem 2.10. ([5], page 242). The smeigroup $OBHom(M_D)$ is in BQ if and only if dim M_D is countably infinite.

III. Conclusion

From this survey, we can conclude that there is a different conditions such that the sub semigroup of $Hom(M_D)$ is in BQ, i.e.

- 1. $In(M_D) \in BQ$ if and only if dim M_D is finite.
- 2. $Sur(M_D) \in BQ$ if and only if dim $Hom(M_D)$ is finite
- 3. The semigroup $OSur(M_D)$ isn't regular.

- 4. The semigroup $OSur(M_D)$ is neither right 0-simple nor left 0-simple.
- 5. If dim M_D is countably infinite , then $BHom(M_D)$ is right simple.
- 6. For every infinite dimension of M_D , $OInSur(M_D)$ is a regular sub semigroup of $Hom(M_D)$
- 7. For every infinite dimension of M_D , $OInSur(M_D)$ is in BQ
- 8. If dim M_D is countably infinite, then $OBHom(M_D)$ is left simple.
- 9. The smeigroup $OBHom(M_D)$ is in BQ if and only if dim M_D is countably infinite.
- 10. Finally, we can conclude that not every semigroup in BQ is a regular semigroup and not every semigroup in BQ is either right 0-simple or left 0-simple.

V. References

- Baupradist, S, Kemprasit, Y," Existence of Bi-ideals which are not Quasi-ideals in Semigroups of Continuous Functions and Semigroups of Differentiable Functions", Proceeding of the International Conference on Algebra and Its Applications, 133,143 (2002)
- Namnak, C, Kemprasit, Y,"On Semigroups of Linear Transformations whose Bi-ideals are Quasi-ideals", PU.M.A Vol 12 No4, 405,413 (2001)
- Namnak, C, Kemprasit, Y, "Some Semigroups of Linear Transformations Whose Sets of Bi-Ideals and Quasi-ideals Coincide", Proceeding of the International Conference on Algebra and Its Applications, 215,224 (2002)
- Namnak, C, Kemprasit, Y, "Generalized Transformatioan Semigroups Whose Bi-ideals and Quasi-ideals Coinside", Southeast Asian Bulletin of Mathematics Vol 27, SEAMS, 623-630, (2003)
- Namnak, C, Kemprasit, Y, "Some BQ-Semigroups of Linear Transformations", Kyungpook Mathematics Journal 43, 237, 246 (2003)
- Kemprasit, Yupaporn, "Regularity and Unit-Regularity of Generalized Semigroups of Linear Transformations", Southeast Asian Bulletin of Mathematics Vol 25, Springer-Verlag, 617-622, (2002)