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Abstract 
 

Fuzzy time series is a dynamic process with linguistic values as its 
observations. Modelling fuzzy time series developed by some researchers used 
the discrete membership functions and table lookup scheme (Wang’s Method) 
from training data. The Wang’s Method is a simple method that can be used to 
overcome the conflicting rule by determining each rule degree. The weakness of 
fuzzy time series model based on the method is that the fuzzy relations may not 
be complete so the fuzzy relations can not cover all values in the domain. This 
paper presents generalization of the Wang’s method using the continuous 
membership function based on fuzzy time series data. Furthermore, this method 
is applied to forecast interest rate of Bank Indonesia Certificate (BIC) based on 
one-factor two-order fuzzy time series. The prediction of interest rate of BIC 
using the proposed method has a higher accuracy than that using the Wang’s 
method.     

  
Keywords: fuzzy relation,  fuzzy time series, generalized Wang’s method, interest 

rate of BIC. 
 
 

1. Introduction 
 

Fuzzy time series is a dynamic process with linguistic values as its observations.               
In recently, fuzzy time series model was developed by some researchers. Song and Chissom 
developed fuzzy time series by fuzzy relational equation using Mamdani’s method [10]. In 
this modeling, determining the fuzzy relation need large computation. Then, Song and 
Chissom constructed first order fuzzy time series for time invariant and time variant cases 
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[11], [12]. This model need complexity computation for fuzzy relational equation.  
Furthermore, to overcome the weakness of the model, Chen designed fuzzy time series model 
by clustering of fuzzy relations [4].   

Hwang constructed fuzzy time series model to forecast the enrollment in Alabama 
University [8]. Fuzzy time series model based on heuristic model gave more accuracy than its 
model designed by some previous researchers [7]. Then, forecasting for enrollment in 
Alabama University based on high order fuzzy time series resulted more accuracy prediction 
[5]. First order fuzzy time series model was also developed by Sah and Degtiarev [9] and 
Chen and Hsu [6]. Abadi [1] constructed fuzzy time series model using table lookup scheme 
(Wang’s method) to forecast interest rate of Bank Indonesia certificate (BIC) and the result 
gave high accuracy. Then, forecasting inflation rate using singular value decomposition 
method have a higher accuracy than that using Wang’s method [2], [3].  

The weakness of the constructing fuzzy relations based on the Wang’s method is that the 
fuzzy relations may not be complete so the fuzzy relations can not cover all values in the 
domain. In this paper, we will design fuzzy time series model using generalized Wang’s 
method to improve the prediction accuracy. Then, its result is used to forecast interest rate of 
BIC. The proposed method has a higher prediction accuracy than the Wang’s method in 
application to forecasting interest rate of BIC.  

The rest of this paper is organized as follows. In section 2, we present the Wang’s method 
to construct fuzzy model. In section 3, we briefly review the definitions of fuzzy time series 
and its properties. In section 4, we present a generalization of Wang’s method to construct 
fuzzy time series model based on training data. In section 5, we apply the proposed method to 
forecasting interest rate of BIC. We also compare the proposed method with the Wang’s 
method in the forecasting interest rate of BIC. Finally, some conclusions are discussed in 
section 6.   
 
2. Wang’s method for designing fuzzy rules 

  
In this section, we will introduce the Wang’s method to construct fuzzy rules [13]. 

Suppose that we are given the following N input-output data: 1 2( , ,..., ; )p p n p px x x y , 1, 2,3,...,p N=  
where [ , ]i p i ix Rα β∈ ⊂  and [ , ]p y yy Rα β∈ ⊂ , i = 1, 2, …, n. Designing fuzzy model using 
Wang’s method is given by the following steps: 
Step 1. Define fuzzy sets to cover the input and output domains. 

For each space [ , ]i iα β , i = 1, 2, …, n, define iN  fuzzy sets j
iA , j = 1, 2, …, Ni which are 

complete in  [ , ]i iα β . Similarly, define yN  fuzzy sets jB , j = 1, 2, …, Ny  which are normal 
and complete in [ , ]y yα β .  
Step 2. Generate one rule from one input-output pair. 

For each input-output pair 1 2( , ,..., ; )p p n p px x x y , determine membership value of i px , i = 1, 2, 
…, n in fuzzy sets j

iA , j = 1, 2, …, Ni and membership value of py in fuzzy sets jB , j = 1, 2, 
…, Ny. Then, for each input variable i px , i = 1, 2, …, n, determine the fuzzy set in which i px  
has the largest membership value. In other word, determine  *j

iA  such that * ( ) ( ),j j
i i

i p i pA A
x xµ µ≥  

1, 2,..., ij N= . Similarly, determine *lB such that * ( ) ( ), 1, 2,...,l lp p yB B
y y l Nµ µ≥ = . Finally, we 

construct a fuzzy  IF-THEN rule: 
* * * *

1 1 2 2IF is and is and ... and is ,THEN isj j j l
n nx A x A x A y B     

Step 3. Compute degree of each rule designed in step 2.  



The First International Seminar on Science and Technology, Islamic University of Indonesia, 24-25 January 2009.  
 

From step 2, one rule is generated by one input-output pair. If the number of input-output 
data is large, then it is possible that there are the conflicting rules. Two rules become 
conflicting rules if the rules have same IF parts but different THEN parts. To resolve this 
problem, we assign a degree to each rule designed in step 2. The degree of rule is defined as 
follows: suppose that the rules in Step 2 is constructed by the input-output pair 

1 2( , ,..., ; )p p n p px x x y , then its degree is defined as  

* *
1

( ) ( ) ( )j l
i

n

i p pBAi
D rule x yµ µ

=
= ∏  

Step 4. Construct the fuzzy rule base. 
The rule base consists of the following three sets of rules: (1) The rules designed in Step 2 

that do not conflict with any other rules; (2) The rule from a conflicting group that has the 
maximum degree; (3) Linguistic rules from human experts.   
Step 5. Construct the fuzzy model using the fuzzy rule base. 

We can use any fuzzifier, inference engine and defuzzifier and combine with the fuzzy 
rule base to design fuzzy model.   

If  the number of training data is N and the number of all possible combinations of the 
fuzzy sets defined for the input variables is 

1

n

i
i

N
=
∏ , then the number of fuzzy rules generated by 

Wang’s method may be much less than both  N and 
1

n

i
i

N
=
∏ . Then, the fuzzy rule base generated 

by this method may not be complete so that the fuzzy rules can not cover all values in the 
input spaces.  
 
3. Fuzzy time series 

 
In this section, we introduce the following definitions and properties of fuzzy time series 

referred from Song and Chissom [10].  
Definition 1. Let ( )Y t ⊂R, t = ..., 0, 1, 2, ..., , be the universe of discourse  on which fuzzy 
sets ( )if t  (i = 1, 2, 3,...) are defined and ( )F t is the collection of ( )if t , i = 1, 2, 3,...,then ( )F t is 
called  fuzzy time series on ( )Y t , t = ..., 0, 1, 2, 3, ....    

In the Definition 1, ( )F t  can be considered as a linguistic variable and ( )if t  as the possible 
linguistic values of ( )F t . The value of ( )F t  can be different depending on time t so ( )F t  is 
function of time t. The following procedure gives how to construct fuzzy time series model 
based on fuzzy relational equation. 
Definition 2. Let I and J be indices sets for ( 1)F t −  and ( )F t  respectively. If for 
any ( ) ( )jf t F t∈ , j∈J, there exists ( 1) ( 1)if t F t− ∈ − , i∈I such that there exists a fuzzy relation 

( , 1)ijR t t −  and ( ) ( 1) ( , 1)j i ijf t f t R t t= − − , ( , 1)R t t −  = 
,

( , 1)ij
i j

R t t −


 where ∪  is union operator, then 

( , 1)R t t −  is called fuzzy relation between ( )F t  and ( 1)F t − . This fuzzy relation can be written 
as 

( )F t = ( 1)F t −   ( , 1)R t t − .      (1) 
where   is max-min composition. 

In the equation (1), we must compute all values of fuzzy relations ( , 1)ijR t t −  to determine 
value of ( )F t . Based on above definitions, concept for first order and m-order of fuzzy time 
series can be defined.    
Definition 3.  If ( )F t  is caused by ( 1)F t −  only or by ( 1)F t −  or ( 2)F t −  or … or ( )F t m− , then 
the fuzzy relational equation   
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( ) ( 1) ( , 1)F t F t R t t= − −  or 
     0( ) ( ( 1) ( 2) ... ( )) ( , )F t F t F t F t m R t t m= − ∪ − ∪ ∪ − −     (2) 

is called first order model of ( )F t .  
Definition 4.  If ( )F t  is caused by ( 1)F t − , ( 2)F t − , ... and ( )F t m−  simultaneously, then the 
fuzzy relational equation   

    ( ) ( ( 1) ( 2) ... ( )) ( , )aF t F t F t F t m R t t m= − × − × × − −    (3) 
is called m-order model of ( )F t .     

From equations (2) and (3), the fuzzy relations ( , 1)R t t − , ( , )aR t t m− , ( , )oR t t m−  are important 
factors to design fuzzy time series model. Furthermore for the first order model of ( )F t , for 
any ( ) ( )jf t F t∈ , j∈J, there exists ( 1) ( 1)if t F t− ∈ − , i∈I such that there exists fuzzy relations 

( , 1)ijR t t −  and ( ) ( 1) ( , 1)j i ijf t f t R t t= − − . This is equivalent to ”if ( 1)if t − , then ( )jf t ”, and then 
we have the fuzzy relation ( , 1)ijR t t − =  ( 1)if t − × ( )jf t . Because of ( , 1)R t t −  = 

,
( , 1)ij

i j
R t t −


, then   

( , 1)R t t −  = ,maks {min( ( ), ( 1))}i j j if t f t − .     (4) 
For the relation ( , )oR t t m−  of the first order model, we get  

    ( , )oR t t m−   = maks{
p ,

maks{min( ( ), ( ))}ik jik jk
f t k f t− }.   (5) 

Based on  m-order model of ( )F t , we have  
( , )aR t t m− =  maks{

p , 1, 2,...,
min (

j i i im 1 2( 1) ( 2) ... ( ) ( )i i im jf t f t f t m f t− × − × × − × )}  (6) 

From equations (4), (5) and (6), we can compute the fuzzy relations using max-min 
composition.   
Definition 5. If for 1 2t t≠ , 1 1 2 2( , 1) ( , 1)R t t R t t− = −  or 1 1 2 2( , ) ( , )a aR t t m R t t m− = −  or 1 1( , )oR t t m− =  

2 2( , )oR t t m− , then ( )F t is called time-invariant fuzzy time series. Otherwise it is called time-
variant fuzzy time series. 

Time-invariant fuzzy time series models are independent of time t, those imply that in 
applications, the time-invariant fuzzy time series models are simpler than the time-variant 
fuzzy time series models. Therefore it is necessary to derive properties of time-invariant fuzzy 
time series models.   
Theorem 1. If ( )F t  is fuzzy time series and for any t, ( )F t  has only finite elements ( )if t , i = 
1, 2, 3, ..., n, and ( )F t = ( 1)F t − , then ( )F t is a time-invariant fuzzy time series.  
Theorem 2. If ( )F t  is a time-invariant fuzzy time series, then  

1 0 2 1( , 1) ... ( 1) ( ) ( 2) ( 1)i j i jR t t f t f t f t f t− = ∪ − × ∪ − × − ∪ ... 1( ) ( 1) ...im jmf t m f t m−∪ − × − + ∪  
where  m  is a positive integer and each pair of fuzzy sets is different.  

Based on the Theorem 2, we should not calculate fuzzy relations for all possible pairs.  We 
need only to use one possible pair of the element of ( )F t  and ( 1)F t − with all possible t’s. This 
implies that to construct time-invariant fuzzy time series model, we need only one observation 
for every t and we set fuzzy relations for every pair of observations in the different of time t.  
Then union of the fuzzy relations results a fuzzy relation for the model. Theorem 2 is very 
useful because we sometime have only one observation in every time t.  

Let 1( )F t be fuzzy time series on ( )Y t . If 1( )F t  is caused by 1 2( ( 1), ( 1)),F t F t− −  
( )1 2( 2 , ( 2)),...,F t F t− − 1 2( ( ), ( ))F t n F t n− − , then the fuzzy logical relationship is presented by 

( )1 2 1 2( ( ), ( )),..., ( 2 , ( 2)),F t n F t n F t F t− − − − 1 2( ( 1), ( 1))F t F t− − 1 ( )F t→ and it is called two-factor n-order  
fuzzy time series forecasting model, where 1 2( ), ( )F t F t  are called the main factor and the 
secondary factor fuzzy time series respectively. If  a fuzzy logical relationship is presented as  
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1 2( ( ), ( ),..., ( )),...,mF t n F t n F t n− − − ( )1 2( 2 , ( 2),..., ( 2)),mF t F t F t− − − 1 2( ( 1), ( 1),..., ( 1))mF t F t F t− − − 1( )F t→    (7) 
then  the fuzzy logical relationship is called  m-factor n-order  fuzzy time series forecasting 
model, where 1 ( )F t  are called the main factor fuzzy time series and 2 ( ),..., ( )mF t F t are called the 
secondary factor fuzzy time series. 

Because ( ) ( 1) ( , 1)j i ijf t f t R t t= − −  is equivalent to the fuzzy rule ”IF ( 1)if t − , THEN ( )jf t ”, 
and the fuzzy relation ( , 1)ijR t t − =  ( 1)if t − × ( )jf t , then we can view the fuzzy rule as the fuzzy 
relation and vice versa.  

 
4. Designing fuzzy time series model using generalized Wang’s method 

 
Like in modeling traditional time series data, we use training data to set up the 

relationship among data values at different times. In fuzzy time series, the relationship is 
different from that in traditional time series. In fuzzy time series, we exploit the past 
experience knowledge into the model. The experience knowledge has form “IF … THEN …”. 
This form is called fuzzy rules. Furthermore, main step to modeling fuzzy time series data is 
to identify the training data using fuzzy rules.  

Let 1, ,( ),..., ( )
ik N kA t i A t i− − be Ni fuzzy sets with continuous membership function that are 

normal and complete in fuzzy time series ( )kF t i− , i =1, 2, 3,…, n, k = 1, 2, …, m, then the 
fuzzy rule: 

jR : 
11 ,1 ,( ( ) ( ) and ...and ( ) is ( ))

m

j j
i m i mIF x t n is A t n x t n A t n− − − − and …  

and
11 ,1 ,( ( 1) ( 1) and ...and ( 1) is ( 1))

m

j j
i m i mx t is A t x t A t− − − − , THEN 

11 ,1( ) is ( )j
ix t A t   (8) 

is equivalent to the fuzzy logical relationship (7) and vice versa. So (8) can be viewed as 
fuzzy relation in U V× where 1 ... m n

m nU U U R= × × ⊂ , V R⊂  with 

1 1( ( ),..., ( 1),..., ( ),..., ( 1))A m mx t n x t x t n x tµ − − − − =  ,1 ,1,1 11 1 ,( ( ))... ( ( 1))... ( ( )... ( 1)
i i i m im mA A A m A mx t n x t x t n tµ µ µ µ− − − − ,  

where A = ,1 ,1 , ,1 1
( ) ... ( 1) ... ( ) ... ( 1)i i i m i mm m

A t n A t A t n A t− × × − × × − × × − .  
Let 1 2 1( 1), ( 1),..., ( 1) ( )mF t F t F t F t− − − →  be m-factor one-order fuzzy time series forecasting 

model. Then 1 2 1( 1), ( 1),..., ( 1) ( )mF t F t F t F t− − − →  can be viewed as fuzzy time series forecasting 
model with m inputs and one output. In this paper, we will design m-factor one-order time 
invariant fuzzy time series model using generalized Wang’s method. But this method can be 
generalized to m-factor n-order fuzzy time series model.  

Suppose we are given the following N training data: 1 2 1( ( 1), ( 1),..., ( 1); ( ))p p m p px t x t x t x t− − − , 
1, 2,3,...,p N= . We will introduce a method to construct fuzzy logical relationships from 

training data presented as follows: 
Step 1. Define the universe of discourse for main factor and secondary factor. Let 

1 1[ , ]U Rα β= ⊂  be universe of discourse for main factor, 1 1 1 1( 1), ( ) [ , ]p px t x t α β− ∈  and V = 
[ , ] , 2,3,...,i i R i mα β ⊂ = , be universe of discourse for secondary factors, ( 1) [ , ]ip i ix t α β− ∈ . 
Step 2. Define fuzzy sets on the universes of discourse. Let 1, ,( ),..., ( )

ik N kA t i A t i− − be Ni,k fuzzy 
sets in fuzzy time series ( )kF t i−  that are continuous, normal and complete in [ , ]k k Rα β ⊂ , 

1, 2,3,...,k m=  i =0,1. 
Step 3. Determine all possible antecedents of candidates of fuzzy logical relationships. 
Based on the Step 2, there are ,

1

m

i k
k

N
=
∏ antecedents of candidates of fuzzy logical relationships. 

The antecedent has form: 
1 ,2 ,2
,1 ( 1), ( 1),..., ( 1)

j j mm
jA t A t A t− − − , 1, 2,...,i ij N=  
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Step 4. Determine  consequence of each candidate of fuzzy logical relationship.  
For each antecedent 

1 ,2 ,2
,1 ( 1), ( 1),..., ( 1)

j j mm
jA t A t A t− − − , we choose *

1 ,1
( )

j
A t as the consequence 

of the antecedent if there exists training data * * * *11 2
( ( 1), ( 1),..., ( 1); ( ))

p p m p p
x t x t x t x t− − −   such that 

* * * *,1 ,2 , *1 2 ,11
1 2 1

( ( 1)) ( ( 1)) ... ( ( 1)) ( ( ))
j j j mm j

A A A Ap p m p p
x t x t x t x tµ µ µ µ− − −  

≥
,1 ,2 ,1 2 ,11

1 2 1( ( 1)) ( ( 1)) ... ( ( 1)) ( ( ))
j j j mm j

A p A p A m p A px t x t x t x tµ µ µ µ− − −  for all  training data 

1 2 1( ( 1), ( 1),..., ( 1); ( ))p p m p px t x t x t x t− − −  

From this step we have the following M = 1,
1

m

k
k

N
=
∏ collections of fuzzy logical relationships 

designed from training data: 
Rl:  *

1,1 ,2 ,1 2
,1

( ( 1), ( 1),..., ( 1)) ( )
j j j mm

l l l l

j
A t A t A t A t− − − → , l = 1, 2, 3, …, M.   (9) 

Step 5. Determine the membership function for each fuzzy logical relationship resulted in the 
Step 4. If we view each fuzzy logical relationship as fuzzy relation in U V×  with 

1 ... m
mU U U R= × × ⊂ , V R⊂ , then the membership function for the fuzzy logical relationship (9) 

is defined by 
1 2 1( ( 1), ( 1),..., ( 1); ( ))l p p mp pR

x t x t x t x tµ − − −  
= 

*,1 ,2 , ,11 2 1
( 1) 1 ( 1) 2 ( 1) 1( )

( ( 1)) ( ( 1))... ( ( 1)) ( ( ))l
j j j mm j

A t p A t p A t mp pA t
x t x t x t x tµ µ µ µ− − −− − −  

Step 6. For given input fuzzy set ( 1)A t′ − in input space U, compute the output fuzzy set ( )lA t′ in 
output space V for each fuzzy logical relationship (9) as 

1 1( ( )) sup( ( ( 1)) ( ( 1); ( ))))llA A Rx U
x t x t x t x tµ µ µ′ ′

∈
= − −  where 1( 1) ( ( 1),..., ( 1))mx t x t x t− = − − .  

Step 7. Compute fuzzy set ( )A t′  as the combination of  M fuzzy sets 1 2 3( ), ( ), ( ),. . . , ( )MA t A t A t A t′ ′ ′ ′  by 

1( ) 1 ( ) 1 ( ) 11
( ( )) max( ( ( ),..., ( ( )))

M

M

A t A t A tl
x t x t x tµ µ µ′ ′ ′=

=  

   = 11
max (sup( ( ( 1)) ( ( 1); ( )))l

M

A Rl x U
x t x t x tµ µ′= ∈

− −   

   = 
, ,11

( 1) 11
1

max (sup( ( ( 1)) ( ( 1)) ( ( ))))li ff i

mM

A A t f Al x U f

x t x t x tµ µ µ′ −= ∈ =

− −∏ . 

Step 8. Calculate the forecasting outputs. Based on the Step 7, if we are given input fuzzy 
set ( 1)A t′ − , then the membership function of the forecasting output ( )A t′ is  

( ) 1( ( ))A t x tµ ′ =
, ,11

( 1) 11
1

max (sup( ( ( 1)) ( ( 1)) ( ( ))))li ff i

mM

A A t f Al x U f

x t x t x tµ µ µ′ −= ∈ =

− −∏ .    (10) 

Step 9. Defuzzify the output of the model. If the goal of output of the model is fuzzy set, then 
stop in the Step 8. We use this step if we want the real output. For example, if given the input 

fuzzy set ( 1)A t′ −  with Gaussian membership function 
* 2

( 1) 2
1

( ( 1) ( 1))
( ( 1)) exp( )

m
i i

A t
i i

x t x tx t
a

µ ′ −
=

− − −
− = −∑ , 

then the forecasting real output using the Step 8 and center average defuzzifier is  
* 2

2 2
1 1

,
1 1 * 2

2 2
1 1

,

( ( 1) ( 1))exp( )
( ) ( ( 1),..., ( 1))

( ( 1) ( 1))exp( )

jM m
i i

j
j i

i i j
m jM m

i i

j i
i i j

x t x ty
a

x t f x t x t
x t x t

a

σ

σ

= =

= =

− − −
−∑ ∑

+
= − − =

− − −
−∑ ∑

+

    (11) 

where jy  is center of the fuzzy set 
1,1 ( )j
iA t .  

From Step 4, the set of fuzzy logical relationships (9) constructed by this method contains 
fuzzy relations designed by the Wang’s method. Therefore the proposed method is 
generalization of the Wang’s method. 
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5. Application of the proposed method      
 

In this section, we apply the proposed method to forecast interest rate of BIC based on 
one-factor two-order fuzzy time series model. The data are taken from January 1999 to 
February 2003. The data from January 1999 to December 2001 are used to training and the 
data from January 2002 to February 2003 are used to testing. We apply the procedure in 
Section 4 to predict interest rate of BIC of kth month using data of (k-2)th  and (k-1)th months. 
We use [10, 40] as universe of discourse of two inputs and one output and we define seven 
fuzzy sets 1 2 7, ,...,A A A with Gaussian membership function on each universe of discourse of 
input and output. Then, we apply the Step 4 of the proposed method to yield forty nine fuzzy 
logical relationships. The fuzzy logical relationships generated by the proposed method are 
shown in Table I.  

    
Table I. Fuzzy logical relationship groups for interest rate of BIC  

using generalized Wang’s method 
 

Number ( ( 2)x t − , ( 1)x t − ) ( )x t→  Number ( ( 2)x t − , ( 1)x t − ) ( )x t→  Number ( ( 2)x t − , ( 1)x t − ) ( )x t→  
1 (A1, A1) → A1 17 (A3, A3) → A3 33 (A5, A5) → A3 
2 (A1, A2) → A2 18 (A3, A4) → A3 34 (A5, A6) → A7 
3 (A1, A3) → A2 19 (A3, A5) → A2 35 (A5, A7) → A7 
4 (A1, A4) → A2 20 (A3, A6) → A2 36 (A6, A1) → A2 
5 (A1, A5) → A3 21 (A3, A7) → A7 37 (A6, A2) → A2 
6 (A1, A6) → A3 22 (A4, A1) → A2 38 (A6, A3) → A2 
7 (A1, A7) → A3 23 (A4, A2) → A2 39 (A6, A4) → A3 
8 (A2, A1) → A1 24 (A4, A3) → A2 40 (A6, A5) → A3 
9 (A2, A2) → A2 25 (A4, A4) → A2 41 (A6, A6) → A5 

10 (A2, A3) → A3 26 (A4, A5) → A2 42 (A6, A7) → A6 
11 (A2, A4) → A3 27 (A4, A6) → A7 43 (A7, A1) → A2 
12 (A2, A5) → A3 28 (A4, A7) → A7 44 (A7, A2) → A2 
13 (A2, A6) → A3 29 (A5, A1) → A2 45 (A7, A3) → A3 
14 (A2, A7) → A7 30 (A5, A2) → A2 46 (A7, A4) → A3 
15 (A3, A1) → A2 31 (A5, A3) → A2 47 (A7, A5) → A3 
16 (A3, A2) → A2 32 (A5, A4) → A2 48 (A7, A6) → A5 
        49 (A7, A7) → A6 

 
Based on the Table II, the average forecasting errors of interest rate of BIC using the 

Wang’s method and the proposed method are 3.8568% and 2.7698%, respectively. So we can 
conclude that forecasting interest rate of BIC using the proposed method results more 
accuracy than that using the Wang’s method.   

 
Table II.  Comparison of average forecasting errors of interest rate of BIC from  

the different methods  
 

 
Method 

Number of  
fuzzy relations  

MSE of 
training data 

MSE of testing 
data 

Average 
forecasting errors 

(%) 
Wang’s method 12 0.98759 0.46438 3.8568 

Generalized Wang’s method  49 0.91623 0.24134 2.7698 
 

The comparison of prediction and true values of interest rate of BIC using the Wang’s 
method and the proposed method is shown in Figure 1. 
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(b) 

 
Figure 1. Prediction and true values of interest rate of BIC using 

(a) Wang’s method, (b) generalized Wang’s method 
 
6. Conclusions 

 
In this paper, we have presented a generalization of Wang’s method to construct fuzzy 

time series model based on the training data. We applied the proposed method to forecast the 
interest rate of BIC. The result is that forecasting interest rate of BIC using the proposed 
method has a higher accuracy than that using the Wang’s method. It is important to determine 
the optimal number of fuzzy logical relationships to get efficient computations and to improve 
prediction accuracy. The precision of forecasting depends also to taking factors as input 
variables. In the future works, we will construct the optimal number of fuzzy logical 
relationships and select the important variables to improve prediction accuracy.          
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