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Abstract. Fuzzy time series is a dynamic process with linguistic values as its observations. 
Modelling fuzzy time series developed by some researchers used the discrete membership 
functions and table lookup scheme from training data. Table lookup scheme is a simple method 
that can be used to overcome the conflicting rule by determining each rule degree. The weakness 
of fuzzy time series model based on table look up scheme is that the fuzzy relations may not be 
complete so the fuzzy relations can not cover all values in the domain. This paper presents new 
method to modelling fuzzy time series combining table lookup scheme and singular value 
decomposition methods which use continuous membership function. Table lookup scheme is used 
to construct fuzzy relation from training data and then singular value decomposition of firing 
strength matrix is used to reduce fuzzy relations. Furthermore, this method is applied to forecast 
inflation rate in Indonesia based on six-factors one-order fuzzy time series. This result is 
compared with neural network method and the proposed method gets a higher forecasting 
accuracy rate than the  neural network method.        
 
Key words. fuzzy time series, fuzzy rule, table lookup scheme, firing strength matrix, singular 
value decomposition, inflation rate.  
 

1. Introduction 
 

Fuzzy time series is a dynamic process with linguistic values as its observations. In recently, fuzzy 
time series model was developed by some researchers. Song, Q and Chissom, B.S (1993a) developed 
fuzzy time series by fuzzy relational equation using Mamdani’s method. In this modeling, determining 
the fuzzy relation need large computation. Then Song, Q and Chissom, B.S (1993b, 1994) constructed 
first order fuzzy time series for time invariant and time variant cases. This model needs complexity 
computation for fuzzy relational equation.  Furthermore, to overcome the weakness of the model, Chen, 
S.M. (1996) designed fuzzy time series model by clustering of fuzzy relations.   

Hwang (1998) constructed fuzzy time series model to forecast the enrollment in Alabama University. 
Fuzzy time series model based on heuristic model gives more accuracy than its model designed by some 
previous researchers (Huarng, 2001).  Then, forecasting for enrollment in Alabama University based on 
high order fuzzy time series resulted more accuracy prediction (Chen, S.M., 2002). First order fuzzy time 
series model is also developed by Sah, M. and Degtiarev, K.Y. (2004), and Chen, S.M. and Hsu, C.C. 
(2004). The weakness of the fuzzy relations based on table look up scheme method is that the fuzzy 
relations may not be complete so the fuzzy relations can not cover all values in the domain.  

Forecasting the inflation rate in Indonesia by fuzzy model resulted more accuracy than that by regress 
method (Abadi, et al, 2006). Then, Abadi, et al (2007) constructed fuzzy time series model using table 
lookup scheme to forecast Bank Indonesia certificate and the result give high accuracy. Then, Abadi, et 
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al(2008) shown that forecasting inflation rate using singular value method have a higher accuracy than 
that using Wang’s method.  

The all above research use a discrete membership function. There are interesting topics in modeling 
fuzzy time series especially in determining model that gives good prediction accuracy. In this paper, we 
will design fuzzy time series model combining table lookup scheme and singular value decomposition 
using continuous membership function to improve the prediction accuracy. Then, its result is used to 
forecast inflation rate in Indonesia. The proposed method has a higher prediction accuracy than Wang’s 
method and neural network method in application to forecasting the inflation rate.  

The rest of this paper is organized as follows. In section 2, we introduce the QR-factorization and 
singular value decomposition of matrix and its properties. In section 3, we briefly review the definition of 
fuzzy time series and its properties. In section 4, we present a new method to construct fuzzy time series 
model based on training data. In section 5, we apply the proposed method to forecasting the inflation rate. 
We also compare the proposed method with the Wang’s method and neural network method in the 
forecasting inflation rate. Finally, some conclusions are discussed in section 6.      
 
2.  QR factorization and singular value decomposition 
 

In this section, we will introduce QR factorization and singular value decomposition of matrix and its 
properties referred from Scheick, J.T. (1997).  

Let B be m x n matrix and suppose m n≤ . The QR factorization of B is given by B QR= , where  Q 
is m x m orthogonal  matrix and m x n matrix 11 12[ ]R R R= with 11R is  m x m upper triangular matrix. The 
QR factorization of matrix B always exists and can be computed by Gram-Schmidt orthogonalization. 
Any m x n matrix A can be expressed as  

TA USV=      (1) 
where U and V are orthogonal matrices of  dimensions m x m, n x n respectively and S is m x n matrix 
whose entries are 0 except sii = iσ   1, 2,...,i r=  with 1 2 ... 0rσ σ σ≥ ≥ ≥ ≥ , min( , )r m n≤ . Equation (1) 
is called a singular value decomposition (SVD) of A and the numbers iσ  are called singular values of A. If 

iU , iV  are columns of U and V respectively, then equation (1) can be written as 
1

r
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i
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=
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the optimal rank p approximation of A is given by 
1

p
T

p i i i
i

A U Vσ
=

= ∑ . 

Then
22 2

1 1 1 1

pr r r
T T T

p i i i i i i i i i iF i i i p i pF
A A U V U V U Vσ σ σ σ

= = = + = +
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approximation of A and the approximation error depend only on the summation of the square of the rest 
singular values.  
 
3. Fuzzy time series 

 
In this section, we introduce the following definitions and properties of fuzzy time series referred 

from Song, Q and Chissom, B.S. (1993).  
Definition 1. Let ( )Y t ⊂ R, t = ..., 0, 1, 2, ..., , be the universe of discourse  on which fuzzy sets ( )if t  (i = 
1, 2, 3,...) are defined and ( )F t is the collection of ( )if t , i = 1, 2, 3,...,then ( )F t is called  fuzzy time 
series on ( )Y t , t = ..., 0, 1, 2, 3, ....    

In the Definition 1, ( )F t  can be considered as a linguistic variable and ( )if t  as the possible linguistic 
values of ( )F t . The value of ( )F t  can be different depending on time t so ( )F t  is function of time t. The 
following procedure gives how to construct fuzzy time series model based on fuzzy relational equation. 
Definition 2. Let I and J be indices sets for ( 1)F t −  and ( )F t  respectively. If for any ( ) ( )jf t F t∈ , j∈J, 
there exists ( 1) ( 1)if t F t− ∈ − , i∈ I such that there exists a fuzzy relation ( , 1)ijR t t −  and 



( ) ( 1) ( , 1)j i ijf t f t R t t= − − , let ( , 1)R t t −  = 
,

( , 1)ij
i j

R t t −


 where ∪  is union operator, then ( , 1)R t t −  is 

called fuzzy relation between  ( )F t  and ( 1)F t − . This fuzzy relation can be written as 
( )F t = ( 1)F t −   ( , 1)R t t − .     (2) 

where   is max-min composition. 
In equation (2), we must compute all values of fuzzy relations ( , 1)ijR t t − to determine value of ( )F t . 

Based on above definitions, concept for first order and m-order of fuzzy time series can be defined.    
Definition 3.  If ( )F t  is caused by ( 1)F t −  only or by  ( 1)F t −  or ( 2)F t −  or … or ( )F t m− , then the 
fuzzy relational equation   

( ) ( 1) ( , 1)F t F t R t t= − −  or 

0( ) ( ( 1) ( 2) ... ( )) ( , )F t F t F t F t m R t t m= − ∪ − ∪ ∪ − −    (3) 
is called first order model of ( )F t .  
Definition 4.  If ( )F t  is caused by ( 1)F t − , ( 2)F t − , ... and ( )F t m−  simultaneously, then the fuzzy 
relational equation   

    ( ) ( ( 1) ( 2) ... ( )) ( , )aF t F t F t F t m R t t m= − × − × × − −   (4) 
is called m-order model of ( )F t .     

From equations (3) and (4), the fuzzy relations ( , 1)R t t − , ( , )aR t t m− , ( , )oR t t m−  are important factors 
to design fuzzy time series model. Furthermore for the first order model of ( )F t , for any ( ) ( )jf t F t∈ , 
j∈J, there exists ( 1) ( 1)if t F t− ∈ − , i∈ I such that there exists fuzzy relations ( , 1)ijR t t −  and 

( ) ( 1) ( , 1)j i ijf t f t R t t= − − . This is equivalent to ”if ( 1)if t − , then ( )jf t ”, and then we have the fuzzy 
relation ( , 1)ijR t t − =  ( 1)if t − × ( )jf t . Because of ( , 1)R t t −  = 

,
( , 1)ij

i j
R t t −


, then   

( , 1)R t t −  = ,maks {min( ( ), ( 1))}i j j if t f t − .    (5) 

For the relation ( , )oR t t m−  of the first order model, we get  
    ( , )oR t t m−   = maks{

p ,
maks{min( ( ), ( ))}ik jik jk

f t k f t− }.  (6) 

Based on  m-order model of ( )F t , we have  
( , )aR t t m− =  maks{

p , 1, 2,...,
min (

j i i im 1 2( 1) ( 2) ... ( ) ( )i i im jf t f t f t m f t− × − × × − × )} (7) 

From equations (5), (6) and (7), we can compute the fuzzy relations using max-min composition.   
Definition 5. If for 1 2t t≠ , 1 1 2 2( , 1) ( , 1)R t t R t t− = −  or 1 1 2 2( , ) ( , )a aR t t m R t t m− = −  or 1 1( , )oR t t m− =  

2 2( , )oR t t m− , then ( )F t is called time-invariant fuzzy time series. Otherwise it is called time-variant 
fuzzy time series. 

Time-invariant fuzzy time series models are independent of time t, those imply that in applications, 
the time-invariant fuzzy time series models are simpler than the time-variant fuzzy time series models. 
Therefore it is necessary to derive properties of time-invariant fuzzy time series models.   
Theorem 1. If ( )F t  is fuzzy time series and for any t, ( )F t  has only finite elements  ( )if t , i = 1, 2, 3, 
..., n, and ( )F t = ( 1)F t − , then ( )F t is a time-invariant fuzzy time series.  
Theorem 2. If ( )F t  is a time-invariant fuzzy time series, then  

1 0 2 1( , 1) ... ( 1) ( ) ( 2) ( 1)i j i jR t t f t f t f t f t− = ∪ − × ∪ − × − ∪ ... 1( ) ( 1) ...im jmf t m f t m−∪ − × − + ∪  
where  m  is a positive integer and each pair of fuzzy sets is different.  

Based on the Theorem 2, we should not calculate fuzzy relation for all possible pairs.  We need only 
to use one possible pair of the element of ( )F t  and ( 1)F t − with all possible t’s. This implies that to 
construct time-invariant fuzzy time series model, we need only one observation for every t and we set 
fuzzy relations for every pair of observations in the different of time t.  Then union of the fuzzy relations 
results a fuzzy relation for the model. Theorem 2 is very useful because we sometime have only one 
observation in every time t.  

Let 1( )F t be fuzzy time series on ( )Y t , t = ..., 0, 1, 2, 3, .... If 1( )F t is caused by 1 2( ( 1), ( 1)),F t F t− −  

( )1 2( 2 , ( 2)),...,F t F t− − 1 2( ( ), ( ))F t n F t n− − , then the fuzzy logical relationship is presented by 

( )1 2 1 2( ( ), ( )),..., ( 2 , ( 2)),F t n F t n F t F t− − − − 1 2( ( 1), ( 1))F t F t− − 1 ( )F t→ and is called two factors n-order  



fuzzy time series forecasting model, where 1 2( ), ( )F t F t  are called the main factor and the secondary factor 
fuzzy time series respectively. If  a fuzzy logical relationship is presented as  

1 2( ( ), ( ),..., ( )),...,mF t n F t n F t n− − − ( )1 2( 2 , ( 2),..., ( 2)),mF t F t F t− − − 1 2( ( 1), ( 1),..., ( 1))mF t F t F t− − − 1( )F t→   (8) 
then  the fuzzy logical relationship is called  m factors n-order  fuzzy time series forecasting model, where 

1 ( )F t  are called the main factor fuzzy time series and 2 ( ),..., ( )mF t F t are called the secondary factor fuzzy 
time series. The application of multivariate high order fuzzy time series can be found in Lee et al (2006) 
and Jilani et al (2007).  

Because ( ) ( 1) ( , 1)j i ijf t f t R t t= − −  is equivalent to the fuzzy rule ”IF ( 1)if t − , THEN ( )jf t ”, and 
the fuzzy relation ( , 1)ijR t t − =  ( 1)if t − × ( )jf t , then we can view the fuzzy rule as the fuzzy relation and 
vice versa.  
 
4. Designing fuzzy time series model 

 
Like in modeling traditional time series data, we use training data to set up the relationship among 

data values at different times. In fuzzy time series, the relationship is different from that in traditional 
time series. In fuzzy time series, we exploit the past experience knowledge into the model. The 
experience knowledge has form “IF … THEN …”. This form is called fuzzy rules. So fuzzy rules is the 
heart of fuzzy time series model. Furthermore, main step to modeling fuzzy time series data is to identify 
the training data using fuzzy rules. Constructing fuzzy time series model, referred from Song, Q. & 
Chissom, B.S.(1993), can be done by the following steps: (1) define the universes of discourse; (2) collect 
the training data or linguistic values; (3) define fuzzy sets on the universes of discourse; (4) set up fuzzy 
relationships using training data or linguistic values; (5) sum up all the relationships defined in Step 4. 
Based on Theorem 2, the summation will be the fuzzy time series model; (6) calculate the forecasting 
outputs; (7) defuzzify the output of the model. If the goal of output of the model is fuzzy set, then Step 7 
is not necessary. The Step 7 is used if we want the real output.   

Let 1, ,( ),..., ( )
ik N kA t i A t i− − be Ni fuzzy sets with continuous membership function that are normal and 

complete in fuzzy time series ( )kF t i− , i =1, 2, 3,…, n, k = 1, 2, …, m, then the rule: 
jR : 

11 ,1 ,( ( ) ( ) and ...and ( ) is ( ))
m

j j
i m i mIF x t n is A t n x t n A t n− − − − and …  

and
11 ,1 ,( ( 1) ( 1) and ...and ( 1) is ( 1))

m

j j
i m i mx t is A t x t A t− − − − , THEN 

11 ,1( ) is ( )j
ix t A t   (9) 

is equivalent to the fuzzy logical relationship (8) and vice versa. So (9) can be viewed as fuzzy relation in 
U V× where 1 ... m n

m nU U U R= × × ⊂ , V R⊂  with 1 1( ( ),..., ( 1),..., ( ),..., ( 1))A m mx t n x t x t n x tµ − − − − =  

,1 ,1,1 11 1 ,( ( ))... ( ( 1))... ( ( )... ( 1)
i i i m im mA A A m A mx t n x t x t n tµ µ µ µ− − − − , where A = ,1 ,1 , ,1 1

( ) ... ( 1) ... ( ) ... ( 1)i i i m i mm m
A t n A t A t n A t− × × − × × − × × − .  

Let 1 2 1( 1), ( 1),..., ( 1) ( )mF t F t F t F t− − − →  be m factor one-order fuzzy time series forecasting model. 
Then 1 2 1( 1), ( 1),..., ( 1) ( )mF t F t F t F t− − − →  can be viewed as fuzzy time series forecasting model with m 
inputs and one output. In this paper, we will design m factor one-order time invariant fuzzy time series 
model using table lookup scheme and singular value decomposition method. But this method can be 
generalized to m-factor n-order fuzzy time series model. Table lookup scheme is used to construct fuzzy 
logical relationships and then the singular value decomposition method is used to reduce the fuzzy logical 
relationships. 

Suppose we are given the following N training data: 1 2 1( ( 1), ( 1),..., ( 1); ( ))p p m p px t x t x t x t− − − , 
1, 2,3,...,p N= . Constructing fuzzy logical relationships from training data using the table lookup 

scheme is presented as follows: 
Step 1. Define the universes of discourse for main factor and secondary factor. Let 1 1[ , ]U Rα β= ⊂ be 
universe of discourse for main factor, 1 1 1 1( 1), ( ) [ , ]p px t x t α β− ∈  and V = [ , ] , 2,3,...,i i R i mα β ⊂ = , be 
universe of discourse for secondary factors, ( 1) [ , ]ip i ix t α β− ∈ . 

Step 2. Define fuzzy sets on the universes of discourse. Let 1, ,( ),..., ( )
ik N kA t i A t i− − be Ni fuzzy sets in 

fuzzy time series ( )kF t i−  that are continuous, normal and complete in [ , ] , 2,3,...,k k R k mα β ⊂ = , i =0,1. 
Step 3. Set up fuzzy relationships using training data. For each input-output pair 

1 2 1( ( 1), ( 1),..., ( 1); ( ))p p m p px t x t x t x t− − − , determine the membership values of ( 1)k px t − in  , ( 1)
ki kA t − and 



membership values of 1 ( )px t  in 
1 ,1( )iA t . Then for each ( )k px t i− , determine * ,

( )
ki k

A t i− such that 

* ,,
( ) , ( ) ,( ( )) ( ( ))

j kj k
A t i k p A t i k px t i x t iµ µ− −− ≥ − , j = 1, 2, …, Nk. Finally, for each input-output pair, obtain a 

fuzzy logical relationship as ( * * * *
1 2 1,1 ,2 , ,1

( ( 1), ( 1),..., ( 1)) ( )
mj j j m i

A t A t A t A t− − − → . If we have some fuzzy 

logical relationships with the same antecedent part but different consequent part, then the fuzzy logical 
relationships are called the conflicting fuzzy relation. So we must choose one fuzzy logical relationship of 
conflicting group that has the maximum degree.  
For a fuzzy logical relationship generated the input-output pair 1 2 1( ( 1), ( 1),..., ( 1); ( ))p p m p px t x t x t x t− − − , 
we define its degree as  

* * * *,1 ,2 , ,11 2 1
( 1) 1 ( 1) 2 ( 1) ( ) 1( ( ( 1)) ( ( 1))... ( ( 1)) ( ( ))

j j j m im
A t p A t p A t mp A t px t x t x t x tµ µ µ µ− − −− − − . From this 

step we have the following  M collections of fuzzy logical relationships designed from training data: 
Rl:  

* * * *,1 ,2 , ,11 2 1

( ( 1), ( 1),..., ( 1)) ( )
j j j m im

l l l lA t A t A t A t− − − → , l = 1, 2, 3, …, M.   (10) 

Step 4. Determine the membership function for each fuzzy logical relationship resulted in the Step 3.   We 
view each fuzzy logical relationship as fuzzy relation in U V×  with 1 ... m

mU U U R= × × ⊂ , V R⊂ , then 
the membership function for the fuzzy logical relationship (10) is defined by 

1 2 1( ( 1), ( 1),..., ( 1); ( ))l p p mp pR
x t x t x t x tµ − − −  

 = 
* * * *,1 ,2 ,1 2 ,11

( 1) 1 ( 1) 2 ( 1) 1( )
( ( 1)) ( ( 1))... ( ( 1)) ( ( ))l

j j j mm i
A t p A t p A t mp pA t

x t x t x t x tµ µ µ µ− − −− − −  

Step 5. For given input fuzzy set ( 1)A t′ − in input space U, compute the output fuzzy set ( )lA t′ in output 
space V for each fuzzy logical relationship (10)  as 1 1( ( )) sup( ( ( 1)) ( ( 1); ( ))))llA A Rx U

x t x t x t x tµ µ µ′ ′
∈

= − −  where 

1( 1) ( ( 1),..., ( 1))mx t x t x t− = − − .  
Step 6. Compute fuzzy set ( )A t′  as the combination of  M fuzzy sets 1 2 3( ), ( ), ( ),. . . , ( )MA t A t A t A t′ ′ ′ ′  by 

1( ) 1 ( ) 1 ( ) 11
( ( )) max( ( ( ),..., ( ( )))

M

M

A t A t A tl
x t x t x tµ µ µ′ ′ ′=

=  

= 11
max (sup( ( ( 1)) ( ( 1); ( )))l

M

A Rl x U
x t x t x tµ µ′= ∈

− −  = 
, ,11

( 1) 11
1

max (sup( ( ( 1)) ( ( 1)) ( ( ))))li ff i

mM

A A t f Al x U f

x t x t x tµ µ µ′ −= ∈ =

− −∏ . 

Step 7. Calculate the forecasting outputs. Based on the Step 6, if we are given input fuzzy set ( 1)A t′ − ,  
then the membership function of the forecasting output ( )A t′ is  

( ) 1( ( ))A t x tµ ′ =
, ,11

( 1) 11
1

max (sup( ( ( 1)) ( ( 1)) ( ( ))))li ff i

mM

A A t f Al x U f

x t x t x tµ µ µ′ −= ∈ =

− −∏ .   (11) 

Step 8. Defuzzify the output of the model. If the goal of output of the model is fuzzy set, then stop in the 
Step 7. We use this step if we want the real output. For example, if given the input fuzzy set ( 1)A t′ −  with 

Gaussian membership function 
* 2

( 1) 2
1

( ( 1) ( 1))
( ( 1)) exp( )

m
i i

A t
i i

x t x tx t
a

µ ′ −
=

− − −
− = −∑ , then the forecasting real 

output using the Step 7 and center average defuzzifier is  
* 2

2 2
1 1

,
1 1 * 2

2 2
1 1

,

( ( 1) ( 1))exp( )
( ) ( ( 1),..., ( 1))

( ( 1) ( 1))exp( )

jM m
i i

j
j i

i i j
m jM m

i i

j i
i i j

x t x ty
a

x t f x t x t
x t x t

a

σ

σ

= =

= =

− − −
−∑ ∑

+
= − − =

− − −
−∑ ∑

+

   (12) 

where jy  is center of the fuzzy set 
1,1 ( )j
iA t .  

If the number of training data is large, then the number of fuzzy logical relationships may be large 
too. So increasing the number of fuzzy logical relationships will add the complexity of computation. To 
overcome the complexity of the computation, we will reduce the fuzzy logical relationships using singular 
value decomposition method. The steps to reduce the fuzzy logical relationships using singular value 
decomposition are presented as follows: 
Step 1. Compute the firing strength of the fuzzy logical relationship (10) for each training datum (x;y) = 

1 2 1( ( 1), ( 1),..., ( 1); ( ))mx t x t x t x t− − −  defined by 



 Ll (x;y) =  
, ,11

, ,11

( 1) 1
1

( 1) 1
1 1

( ( 1)) ( ( ))

( ( 1)) ( ( ))

li ff i

ki ff i

m

A t f Af
mM

A t f Ak f

x t x t

x t x t

µ µ

µ µ

−
=

−
= =

−∏

−∑∏
    (13) 

Step 2. Construct  N x M matrix  L = 

1 2

1 2

1 2

(1) (1) (1)
(2) (2) (2)

( ) ( ) ( )

M

M

M

L L L
L L L

L N L N L N

 
 
 
 
 
 





   



.    (14) 

Step 3. Compute singular value decomposition of L. Based on the Section 2, SVD of L  is written as 
TL USV= , where U and V are  N x N and M x M orthogonal matrices respectively, S is N x M matrix 

whose entries 0,ijs i j= ≠ , sii = iσ   1, 2,...,i r=  with 1 2 ... 0rσ σ σ≥ ≥ ≥ ≥ , min( , )r N M≤ .    
Step 4. Determine the number of fuzzy logical relationships that are designed as r with rank( )r L≤ .  

Step 5. Partition V as 11 12

21 22

V V
V

V V
 

=  
 

, where 11V is r x r matrix, 21V is (M-r) x r matrix, and construct 

( )11 21
T T TV V V= . 

Step 6. Apply QR-factorization to TV  and find  M x M permutation matrix E such that TV E QR=  and Q 
is r x r orthogonal matrix, R = [R11 R12], R11 is r x r upper triangular matrix.   
Step 7. Assign the position of entries one’s in the first r columns of matrix E that indicates the position of 
the r most important fuzzy logical relationships. 
Step 8. Construct fuzzy time series forecasting model (11) and (12) using the r most important fuzzy 
logical relationships.   
 
5. Applications of the proposed method      

 
In this section, we apply the proposed method to forecast the inflation rate in Indonesia. The 

proposed method is implemented using Matlab 6.5.1. In this paper, we apply six-factors one-order fuzzy 
time series model to predict inflation rate. The main factor is inflation rate and the secondary factors are 
the interest rate of Bank Indonesia certificate, interest rate of deposit, money supply, total of deposit and 
exchange rate. The data of the factors are taken from January 1999 to February 2003. The data from 
January 1999 to January 2002 are used to training and the data from February 2002 to February 2003 are 
used to testing. First, we will construct fuzzy logical relationship using table lookup scheme and then 
using the singular value decomposition method, the resulted fuzzy logical relationships will be reduce 
based on r most important fuzzy logical relationships.   The procedure to forecasting inflation rate based 
on the table lookup scheme is given by the following steps: 
Step 1. Define the universes of discourse for main factor and secondary factor. In this paper, we will 
predict the inflation rate of kth month using data of inflation rate, interest rate of Bank Indonesia 
certificate, interest rate of deposit, money supply, total of deposit and exchange rate of (k-1)th month. The 
universes of discourse of interest rate of Bank Indonesia certificate, interest rate of deposit, exchange rate, 
total of deposit, money supply, inflation rate are defined as [10, 40], [10, 40], [6000, 12000], [360000, 
460000], 40000, 90000], [-2, 4] respectively.     
Step 2. Define fuzzy sets that are continuous, complete and normal on the universe of discourse such that 
the fuzzy sets can cover the input spaces. We define sixteen fuzzy sets 1 2 16, ,...,B B B , sixteen fuzzy sets 

1 2 16, ,...,C C C , twenty five fuzzy sets 1 2 25, ,...,D D D , twenty one fuzzy sets 1 2 21, ,...,E E E , twenty one fuzzy 
sets 1 2 21, ,...,F F F ,  thirteen fuzzy sets 1 2 13, ,...,A A A on the universes of discourse of the interest rate of Bank 
Indonesia certificate, interest rate of deposit, exchange rate, total of deposit, money supply, inflation rate 
respectively. We use Gaussian membership function for all fuzzy sets. 
Step 3. Set up fuzzy logical relationships using training data. We use 36 pair of training data and based on 
this step, we have 36 fuzzy relations in the form:  
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Table 1 presents all fuzzy logical relationships. 



Apply the Step 4 to Step 7, for given input fuzzy set ( 1)A t′ − , then the membership function of the 
forecasting output ( )A t′ is  
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Step 8. Defuzzify the output of the model.  The predicting real output of the model using (15) and center 

average defuzzifier is 
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The comparison of prediction and true values of inflation rate using table lookup scheme is shown in 
Figure 2(d). 

To know the most fuzzy logical relationships, we apply the singular value decomposition method to  
a matrix of firing strength of rules. The procedure to discard the less important fuzzy logical relationships 
is presented as follows: 
Step 1. Compute the firing strength of the fuzzy logical relationship in Table 1 based on (13) for each 
training datum. 

Step 2. Construct  36 x 36 matrix  L = 

1 2 36
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, where ( )jL i , i,j = 1, 2, …, 36, is 

computed using Step 1. 
Step 3. Compute singular value decomposition of L as TL USV= . There are thirty four nonzero singular 
values of L. The distribution of the singular values of L can be seen in Figure 1.   
Step 4. Determine the number of fuzzy logical relationships that are designed as r with rank( )r L≤ . 
Based on the Figure 1, the singular values decrease strictly after the first twenty nine singular values. So 
we choose arbitrarily the first eight, twenty, and twenty nine singular values. Apply the QR factorization 
to get a permutation matrix E and then assign the position of entries one’s in the first r columns of matrix 
E that indicates the position of the r most important fuzzy logical relationships.  
 

Table 1. Six-factors one-order fuzzy logical relationship groups for inflation rate using table lookup scheme  
 
rule 

2 3 4 5 6 1
(( ( 1), ( 1), ( 1), ( 1), ( 1), ( 1))x t x t x t x t x t x t− − − − − −    

1
( )x t→  rule 

2 3 4 5 6 1
(( ( 1), ( 1), ( 1), ( 1), ( 1), ( 1))x t x t x t x t x t x t− − − − − −  

1
( )x t→  

1 (B14, C14, D13, E12, F2, A11) → A8 19 (B3, C1, D13, E3, F7, A8) → A6 
2 (B15, C14, D12, E13, F2, A8) → A5 20 (B3, C2, D10, E2, F7, A6) → A4 
3 (B15, C14, D12, E13, F3, A5) → A4 21 (B3, C2, D12, E3, F8, A4) → A7 
4 (B14, C13, D10, E15, F2, A4) → A4 22 (B3, C2, D15, E6, F8, A7) → A8 
5 (B10, C11, D9, E16, F2, A4) → A4 23 (B3, C2, D15, E7, F8, A8) → A9 
6 (B7, C8, D4, E13, F2, A4) → A3 24 (B3, C2, D15, E7, F14, A9) → A6 
7 (B4, C5, D5, E13, F2, A3) → A3 25 (B3, C2, D15, E9, F9, A6) → A7 
8 (B3, C3, D7, E11, F3, A3) → A4 26 (B3, C3, D16, E11, F9, A7) → A7 
9 (B3, C2, D11, E10, F4, A4) → A5 27 (B4, C3, D19, E13, F9, A7) → A6 

10 (B3, C2, D5, E4, F4, A5) → A5 28 (B4, C3, D24, E15, F10, A6) → A7 
11 (B3, C2, D7, E9, F4, A5) → A8 29 (B4, C3, D21, E14, F10, A7) → A8 
12 (B2, C2, D5, E6, F8, A8) → A8 30 (B4, C3, D23, E14, F11, A8) → A9 
13 (B2, C2, D7, E7, F5, A8) → A5 31 (B5, C3, D15, E10, F12, A9) → A5 
14 (B2, C2, D7, E7, F5, A5) → A4 32 (B5, C3, D12, E10, F13, A5) → A6 
15 (B2, C1, D7, E7, F5, A4) → A6 33 (B5, C5, D16, E12, F13, A6) → A6 
16 (B1, C1, D9, E7, F5, A6) → A7 34 (B5, C5, D19, E16, F12, A6) → A8 
17 (B2, C1, D11, E8, F6, A7) → A6 35 (B5, C5, D19, E17, F14, A8) → A8 
18 (B2, C1, D12, E4, F7, A6) → A8 36 (B5, C5, D19, E18, F16, A8) → A9 

 



As the result of taking the first eight, twenty and twenty nine singular values, we reduce the number 
of fuzzy logical  relationships from thirty six to eight, twenty, twenty nine respectively. The positions of 
the eight most important fuzzy logical  relationships are identified as 4, 8, 15, 18, 22, 30, 31, 36. The 
positions of the twenty most important fuzzy logical  relationships are identified as 1, 4, 5, 6, 7, 8, 9, 10, 
12, 15, 18, 20, 22, 27, 30, 31, 32, 33, 34, 36. The positions of the twenty nine most important fuzzy 
logical  relationships are identified as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 22, 25, 26, 
27, 28, 30, 31, 32, 33, 34, 36. The resulted fuzzy logical relationships are used to design fuzzy time series 
forecasting model by (11) and (12).  
 

 

 
Figure 1. Distribution of singular values of matrix L 

 
The MSE of training and testing data from the different number of reduced fuzzy logical  

relationships are shown in Table 2. From Table 2, the predicting inflation rate using the proposed method 
results more accuracy than that using the other methods.  From Figure 1, the singular values are “small” 
after the first twenty nine singular values, so the forecasting inflation rate using the first twenty nine 
singular values gives a better accuracy than using the first eight and twenty singular values respectively.    

 
Table 2. Comparison of MSE of training and testing data 

 using the different methods 
 

Method Number of  
fuzzy relations  

MSE of 
training data 

MSE of 
testing data 

 
Proposed method 

 

8 0.485210 0.66290 
20 0.312380 0.30173 
29 0.191000 0.21162 

Table lookup scheme 36 0.063906 0.30645 
Neural network  0.757744 0.42400 
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Figure 2. Prediction and true values of inflation rate using proposed method: (a) eight fuzzy logical relationships, (b). twenty fuzzy 

logical relationships, (c) twenty nine fuzzy logical relationships, (d) thirty six fuzzy logical relationships 



 
6. Conclusions 

 
In this paper, we have presented a new method to design fuzzy time series model. The method 

combines the table lookup scheme and singular value decomposition method, where defined fuzzy sets 
are   continuous, normal and complete in the universe of discourse. Based on the training data, the table 
lookup scheme is used to construct fuzzy logical relationships and then we apply the singular value 
decomposition and QR-factorization method to the firing strength matrix of the fuzzy logical relationships 
to remove the less important fuzzy logical relationships. The position of the entries one’s of the 
permutation matrix yields the position of the most important fuzzy logical relationships. Then, the 
proposed method is applied to forecast the inflation rate. Furthermore, predicting inflation rate using the 
proposed method yields more accuracy than that using the neural network method. The precision of 
forecasting depends also to taking factors as input variables and the number of defined fuzzy sets. In the 
next work, we will design how to select the important variables to improve prediction accuracy.          
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