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PREFACE 

This is an introductory textbook for a first course in applied statistics and probability for un 

dergraduate students in the physics education. Statistical methods are an important tool in these 

activities because they provide the education researcher  with both descriptive and analytical 

methods for dealing with the variability in observed data. Although many of the methods we 

present are fundamental to statistical analysis in other disciplines, such as education and 

management, the life sciences, and the social sciences, we have elected to focus on an physics 

education students-oriented audience. We believe that this approach will best serve students in 

physics education and will allow them to concentrate on the many applications of statistics in these 

disciplines. This book can be used for a single course, although we have provided enough material 

for two courses in the hope that more students will see the important applications of statistics in 

their everyday work and elect a second course. We believe that this book will also serve as a useful 

reference. 

 

ORGANIZATION OF THE BOOK 

 

Chapter 1 is an introduction to the field of statistics and how engineers use statistical 

methodology as part of the science education problem-solving process. This chapter also introduces 

the reader to some science education applications of statistics, including building empirical 

models,designing engineering experiments, and monitoring manufacturing processes. These topics 

are discussed in more depth in subsequent chapters. 

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous random 

variables, probability distributions, expected values, joint probability distributions, and 

independence. We have given a reasonably complete treatment of these topics but have avoided 

many of the mathematical or more theoretical details.  

Chapter 6 begins the treatment of statistical methods with random sampling; data summary 

and description techniques, including stem-and-leaf plots, histograms, box plots, and probability 

plotting; and several types of time series plots. Chapter 7 discusses point estimation of parameters. 

This chapter also introduces some of the important properties of estimators, the method of 

maximum likelihood, the method of moments, sampling distributions, and the central limit theorem. 



Chapter 8 discusses interval estimation for a single sample. Topics included are confidence 

intervals for means, variances or standard deviations, and proportions and prediction and tolerance 

intervals. Chapter 9 discusses hypothesis tests for a single sample. Chapter 10 presents tests and 

confidence intervals for two samples. This material has been extensively rewriteten and 

reorganized. There is detailed information and examples of methods for determiningappropriate 

sample sizes. We want the student to become familiar with how these techniques are used to solve 

real-world engineering problems and to get some understanding of the con-cepts behind them. We 

give a logical, heuristic development of the procedures, rather than a formal mathematical one. 

Chapters 11 present simple and multiple linear regression. We use matrix algebra throughout 

the multiple regression material because it is the only easy way to understand the concepts 

presented. Scalar arithmetic presentations of multiple regression are awkward at best, and we have 

found that undergraduate engineers are exposed to enoughmatrix algebra to understand the 

presentation of this material. 
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CHAPTER 1 

THE ROLE OF STATISTICS 

IN EDUCATIONAL  RESEARCH 

 
The issue of the quality of education is increasingly becoming an area of  interest and 

concern to many nations of the developing world, especially in Indonesian. This is so because 

many countries in this region have  realized that education plays  a crucial and pivotal role in 

development at national, regional and  international levels.  There is concern because quality 

of education seems to be either stagnating or deteriorating. It is also generally accepted that 

educational development in  Indonesia has remained low in comparison with other regions of 

the world. There is interest  in the issue of quality because it is an integral  part of the 

development and monitoring of  education systems the world over. There can be no argument 

over the fact that quality  assessments have frequently been made on the basis of key indicators 

generated through  the analysis of the statistics available.  What has frequently not been 

appreciated,  however, is that statistics is one of the essential, key instruments for the promotion 

of  quality in education. This presentation attempts to highlight some points on how statistics  

has been, and can be used, to improve quality in  education. So the paper is not meant to  tell 

you anything new, but rather to rai se awareness on the importance and value of  statistics in 

the development of quality in education 

 

A. Learning Objectives 

After careful study of this chapter you should be able to do the following: 

1. Identify the role that statistics can play in the science education problem-solving process 

2. Discuss how variability affects the data collected and used for making educational 

research decisions 

3. Explain the difference between enumerative and analytical studies 



4. Discuss the different methods that scientist use to collect data 

5. Identify the advantages that designed experiments have in comparison to other methods 

of collecting science education data 

6. Explain the differences between mechanistic models and empirical models 

7. Discuss how probability and probability models are used in science education 

 

An Physicians is someone who solves problems of interest to society with the efficient 

application of scientific principles by: 

•  Refining existing products 

•  Designing new products or processes 

Statistical techniques are useful for describing and   understanding variability. By variability, 

we mean successive observations of a system or phenomenon do not produce exactly the same 

result. Statistics gives us a framework for describing this variability and for learning about 

potential sources of variability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Types of Studies 

Three basic methods for collecting data: 

1. A retrospective study using historical data 

• Data collected in the past for other purposes. 

2. An observational study 

• Data, presently collected, by a passive observer. 

3. A designed experiment 

• Data collected in response to process input changes. 

 

B. The Nature of Data 



Anything that can be counted or measured is called a variable.   Knowledge of the different 

types of variables, and the way they are measured, play a crucial part in choice of coding and 

data collection.   The measurement of variables can be categorized as categorical (nominal or 

ordinal scales) or continuous (interval or ratio scales). 

Categorical measures can be used to identify change in a variable, however, should you 

wish to measure the magnitude of the change you should use a continuous measure.   

A nominal scale allows for the classification of objects, individual and responses based 

on a common characteristic or shared property.   A variable measured on the nominal scale 

may have one, two or more sub-categories depending on the degree of variation in the coding.   

Any number attached to a nominal classification is merely a label, and no ordering is implied: 

social worker, nurse, electrician, physicist, politician, teacher, plumber, etc.    

An ordinal scale not only categorizes objects, individuals and responses into sub-

categories on the basis of a common characteristic it also ranks them in descending order of 

magnitude.   Any number attached to an ordinal classification is ordered, but the intervals 

between may not be constant: GCSE, A-level, diploma, degree, postgraduate diploma, higher 

degree, and doctorate.     

The interval scale has the properties of the ordinal scale and, in addition, has a 

commencement and termination point, and uses a scale of equally spaced intervals in relation 

to the range of the variable.   The number of intervals between the commencement and 

termination points is arbitrary and varies from one scale to another.   In measuring an attitude 

using the Likert scale, the intervals may mean the same up and down the scale of 1 to 5 but 

multiplication is not meaningful: a rating of ‘4’ is not twice as ‘favourable’ as a rating of ‘2’.    

 

In addition to having all the properties of the nominal, ordinal and interval scales, the ratio 

scale has a zero point.   The ratio scale is an absolute measure allowing multiplication to be 

meaningful.   The numerical values are ‘real numbers’ with which you can conduct 

mathematical procedures: a man aged 30 years is half the age of a woman of 60 years.    

 

I.1.1.1.1.1.1.1.1 Categorical I.1.1.1.1.1.1.1.2 C

ontinuous 

Unitary Dichotomous Polytomous Interval or Ratio Scale 

 

Name 

 

Occupation 

 

Location 

 

Site 

 

 

 

[1]   . . . Yes  

[0]   . . . No 

 

[1]   . . . Good 

[0]   . . . Bad 

 

[1]   . . . Female 

[0]   . . . Male 

 

Attitudes (Likert 

Scale): 

[5] . . . strongly agree 

[4] . . . agree 

[3] . . . uncertain 

[2] . . . disagree 

[1] . . . strongly 

disagree 

Age: 

[4] . . . Old 

 

Income (£000s per 

annum) 

 

Age (in years) 

 

Reaction Time (in 

seconds) 

 

Absence (in days) 



 

 

 

 

 

 

 

 

 

 

[1]   . . . Right 

[0]   . . . Wrong 

 

[1]   . . . Extrovert 

[0]   . . . Introvert  

 

[1]   . . . Psychotic  

[0]   . . . Neurotic   

 

[1]   . . . Assertive  

[0]   . . . Passive  

 

[1]   . . . Present  

[0]   . . . Absent  

[3] . . . Middle-aged 

[2] . . . Young 

[1] . . . Child 

 

Income: 

[3] . . . High 

[2] . . . Medium 

[1] . . . Low 

 

Socio-Economic 

Status: 

[5] . . . A 

[4] . . . B 

[3] . . . C1 

[2] . . . C2 

[1] . . . D 

[0] . . . E 

 

 

Distance (in kilometres) 

 

Length (metres) 

 

Attitude (Thurstone & 

Cheve) 

 

I.1.1.1.1.1.1.1.3 Qualitative 

 

I.1.1.1.1.1.1.1.4 Quantitative 

Sex (Male/Female) 

Age (Old/Young) 

Attitude (Favourable/Unfavourable) 

Attitude (Likert scale) 

Achieved Educational Level 

(High/Low) 

Style (Autocratic/Participative) 

Location (Urban/Rural) 

Performance (Good/Bad) 

 

Age (in years) 

Attitude (Guttman scale) 

Attitude (Thurstone & Cheve scale) 

Performance (errors or faults per 

minute) 

Achieved Educational Level 

(number of years post-secondary 

school education) 

 

 

Table I 

A Two-Way Classification of Variables 

 

 

1. Methods of Data Collection 

 

The major approaches to gathering data about a phenomenon are from primary 

sources: directly from subjects by means of experiment or observation, from informants by 

means of interview, or from respondents by questionnaire and survey instruments.   Data 

may also be obtained from secondary sources: information that is readily available but not 



necessarily directly related to the phenomenon under study.   Examples of secondary 

sources include published academic articles, government statistics, an organization’s 

archival records to collect data on activities, personnel records to obtain data on age, sex, 

qualification, length of service, and absence records of workers, etc.   Data collected and 

analyzed from published articles, research papers and journals may  be a primary source if 

the material is directly relevant to your study.   For instance, primary sources for a study 

conducted using the Job Descriptive Index may be Hulin and Smith (1964-68) and Jackson 

(1986-90), whereas a study using an idiosyncratic study population, technique and 

assumptions, such as those published by Herzberg, et alia (1954-59), would be a secondary 

source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Primary Sources    Secondary Sources 
 
 
 
 
 
 
 
 
 
Interview       Survey     Census 
                  Observation    Experiment     Instruments   
              Archives         Other 
            records 
 
Stuctured     Participant         True      Captive 

Previous  
                      unrelated 
            studies 

     Unstructured   Non-participant     Quasi             Mailed 
 
 
 
 

Methods of Data Collection 

Data not primarily or directly gathered 
for the purposes of the study 

Data primarily and directly gathered 
for the purpose of the study 



 

 

 

1.1.1.1.1.1.1.2 Figure 2 Classification of Methods of Data Collection 

1.1.1.1.1.1.1.3  

2. Procedures for Coding Data 

 

A coding frame is simply a set of instructions for transforming data into codes and 

for identifying the location of all the variable measured by the test or instrument.    Primary 

data gathered from subjects and informants is amenable to control during the data 

collection phase.   The implication is that highly structured data, usually derived from tests, 

questionnaires and interviews, is produced directly by means of a calibrated instrument or 

is readily produced from raw scores according to established rules and conventions. 

Generally, measures such as physical characteristics such as height and weight are 

measured on the ratio scale.    Whereas psychological attributes such as measures of attitude 

and standard dimensions of personality are often based on questions to which there is no 

appropriate response.   However, the sum of the responses is interpreted according to a set 

of rules and provides a numerical score on the interval scale but is often treated as though 

the measures relate the ratio scale.   Norms are available for standard tests of physical and 

psychological attributes to establish the meaning of individual scores in terms of those 

derived from the general population.   A questionnaire aimed at determining scores as a 

measure of a psychological attribute are said to be pre-coded; that is, the data reflects the 

coder’s prior structuring of the population.   The advantages of pre-coding are that it 

reduces time, cost and coding error in data handling.   Ideally, the pre-coding should be 

sufficiently robust and discriminating as to allow data processing by computer. 

 

A coding frame should include information for the variable to be measured: 

• the source data (e.g. Question 7 or ‘achieved educational level’); 

• a list of the codes (e.g. number of years post-secondary school education); 

• column location of the variable on the coded matrix. 

 

Example 1: 

The following numbers represent students’ scores on a physics test: 

19,23,17,27,21,20,17,22,19,17,25,21,29,24 

A frequency table shows the distribution or number of students who achieved a particular 

score on the physics test. In Example 1, three students achieved a score of 17 

Physics Score Frequency Percent Percentile 

17 3 21.4 21.4 



19 2 14.3 35.7 

20 1 7.1 42.9 

21 2 14.3 57.1 

22 1 7.1 64.3 

23 1 7.1 71.4 

24 1 7.1 78.6 

25 1 7.1 85.7 

27 1 7.1 82.9 

29 1 7.1 100.0 

Totals 14 100.0  

 

The following are the most common statistics used to describe frequency distributions: 

N – the number of scores in a population 

n – the number of scores in a sample 

Percent – the proportion of students in a frequency distribution who had a particular score. In 

Example 1, 21% of the students achieved a score of 17.  

Percentile – The percent of students in a frequency distribution who scored at or below a 

particular score (also referred to as percentile rank). In Example 1, 79% of the students 

achieved a score of 24 or lower, so a score of 24 is at the 79th percentile.  

Mean – The average score in a frequency distribution. In Example 1, the mean score is 21.5. 

(Abbreviations for the mean are M if the scores are from a sample of participants and μ if the 

scores are from a population of participants.)  

Median – The score in the middle of frequency distribution, or the score at the 50th percentile. 

In Example 1, the median score is 21. 

Mode – The score that occurs most frequently in the distribution. In Example 1, the mode is 

17. 

Range – The difference between the highest and lowest score in the distribution. In Example 

1, the range is 12. 

Standard Deviation – A measure of how much the scores vary from the mean. In the sample, 

the standard deviation is 3.76, indicating that the average difference between the scores and 

mean is around 4 points. The higher the standard deviation, the more different the scores are 

from one another and from the mean. (Abbreviations for the standard deviation are SD if the 

scores are from a sample and Σ if the scores are from a population.)  

The mean, median and mode are called measures of central tendency because they identify a 

single score as typical or representative of all the scores in a frequency distribution. 

javascript:newWindow('..//primer/glossary_frame.asp?term=N',400,250);
javascript:newWindow('..//primer/glossary_frame.asp?term=population',400,250);
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javascript:newWindow('..//primer/glossary_frame.asp?term=median',400,250);
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The design of a coding frame is also determined by the approach we take in respect of the 

data: what the data signifies, and useful ways of understanding the data once collected.   After 

Swift (1996), three approaches can be identified: 

 

a. Representational Approach 

The response of the informant is said to express the surface meaning of what is “out 

there” requiring the researcher to apply codes to reduce the data, whilst at the same time, 

reflecting this meaning as faithfully as possible.   At this stage of the process, the data must 

be treated independently from any views the researcher may hold about underlying 

variables and meanings.    

 

 

b. Anchored-in Approach 

The researcher may view the responses as having additional and implicit meanings 

that come from the fact that the responses are dependent on the data-gathering context.   

For example, in investigating worker involvement, we might want to conduct this with a 

framework comprising of types of formal and informal worker/manager interactions.   As 

a consequence, the words given by informants can be interpreted to produce codes on more 

than one dimension relating to the context: (1) nature of the contact: formal versus 

informal, intermittent versus continuous contact, etc.  (2) initiator of contact: worker versus 

manager.   The coding frame using this approach takes into account “facts” as being 

anchored to the situation, rather than treating the data as though they are context-free. 

 

c. Hypothesis-Guided Approach 

Although similar to the second approach, we may view the data as having multiple 

meanings according the paradigm or theoretical perspective from which they are 

approached (e.g. phenomenological or hermeneutic approach to investigating a human or 

social phenomenon). The hypothesis-guided approach recognizes that the data do not have 

just one meaning which refers to some reality approachable by analysis for the surface 

meaning of the words: words have multiple meanings, and “out there” is a multiverse rather 

than a universe.   In the hypothesis-guided approach, the researcher might use the data, and 

other materials, to create or investigate variables that are defined in terms of the theoretical 

perspective and construct propositions.   For example, a data set might contain data on 

illness and minor complaints that informants had experienced over a period of say, one 

year.   Taking the hypothesis-guided approach, the illness data might be used as an indicator 

of occupational stress or of a reaction to transformational change.    Hence, the coding 

frame is based on the researcher'’ views and hypotheses rather than on the surface meanings 

of the responses. 

 

 



C. Analysis of Individual Observations 

 

In the analysis of individual observations, or ungrouped data, consideration will be given 

to all levels of measurement to determine which descriptive measures can be used, and under 

what conditions each is appropriate. 

One of the most widely used descriptive measures is the ‘average’.   One speaks of the 

‘average age’, average response time’, or ‘average score’ often without being very specific as 

to precisely what this means.   The use of the average is an attempt to find a single figure to 

describe or represent a set of data.   Since there are several kinds of 'average', or measures of 

central tendency, used in statistics, the use of precise terminology is important: each ‘average’ 

must be clearly defined and labelled to avoid confusion and ambiguity.    At least three kinds 

of common uses of the ‘average’ can be described: 

1. An average provides a summary of the data.   It represents an attempt to find one figure 

that tells more about the characteristics of the distribution of data than any other.   For 

example, in a survey of several hundred undergraduates the average intelligence quotient 

was 105: this one figure summarizes the characteristic of intelligence. 

2. The average provides a common denominator for comparing sets of data.   For example, 

the average score on the Job Descriptive Index for British managers was found to be 144, 

this score provides a quick and easy comparison of levels of felt job satisfaction with other 

occupational groups. 

3. The average can provide a measure of typical size.  For example, the scores derived for a 

range of dimensions of personality can be compared to the norms for the group the sample 

was taken from; thus, one can determine the extent to which the score for each dimension 

is above, or below, that to be expected. 

 

1. The Mode 

The mode can be defined as the most frequently occurring value in a set of data; it 

may be viewed as a single value that is most representative of all the values or observation 

in the distribution of the variable under study.   It is the only measure of central tendency 

that can be appropriately used to describe nominal data.   However, a mode may not exist, 

and even if it does, it may not be unique: 

 

1 2 3 4 5 6 7 8 9 10  . . . . . . . . . . . . No mode 

Y Y N Y N N N N Y . . . . . . . . . . . . Unimodal (N) 

1 2 2 3 4 4 4 4 5 5  . . .  . . . . . . . . . Unimodal (4) 

1 2 2 2 3 4 5 5 5 6  . . . . . . . . . . . . Bimodal (2, 5) 

1 2 2 3 4 4 5 6 6 7  . . . . . . . . . . . . Multimodal (2, 4, 6) 

 

With relatively few observations, the mode can be determined by assembling the set 

of data into an array.   Large numbers of observations can be arrayed by means of Microsoft 

EXCEL, or other statistical software programs: 



 

 Subject  Reaction Time  Array 

     (in m/seconds) 

 000123    625   460 

 000125    500   480 

 000126    480   500  

 000128    500   500  

 000129    460   500  

 000131    500   500 Mode 

 000134    575   510 

 000137    530   525 

 000142    525   530 

 000144    500   575 

 000145    510   625 

 

2. The Median 

When a measurement of a set of observation is at least ordinal in nature, the 

observations can be ranked, or sorted, into an array whereby the values are arranged in 

order of magnitude with each value retaining its original identity.   The median can be 

defined as the value of the middle item of a set of items that form an array in ascending or 

descending order of rank: the [N+1}/2 position.   In simple terms, the median splits the 

data into two equal parts, allowing us to state that half of the subjects scored below the 

median value and half the subjects scored above the median value.   If an observed value 

occurs more than once, it is listed separately each time it occurs: 

 

 

Subject 

Reaction 

Time in 

m/secs 

Reaction Time shown 

in array: shortest to 

longest 

Reaction Time shown 

in array: 

longest to shortest 

000123 625 460 625 

000125 500 480 575 

000126 480 500 530 

000128 500 500 525 

000129 460 500 510 

000131 500 500 500  Median 

000134 575 510 500 

000137 530 525 500 

000142 525 530 500 

000144 500 575 480 

000145 510 625 460 

 



3. The Arithmetic Mean 

 

Averages much more sophisticated than the mode or median can be used at the 

interval and ratio level.   The arithmetic mean is widely used because it is the most 

commonly known, easily understood and, in statistics, the most useful measure of central 

tendency.   The arithmetic mean is usually given the notion ∑ and can be computed: 

∑ [x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8  + . . .  xn] / N 

 

where, x1, x2, x3 . . . xn are the values attached to the observations; and, N is the total 

number of observations: 

 

Subject 

 

 

000123 

x1 

 

000125 

x2 

 

000126 

x3 

 

000128 

x3 

 

000129 

x4 

 

000131 

x5 

 

000134 

x6 

Reaction Time  

(m/secs) 

625 500 480 500 460 500 575 

 

Using the above formula, the arithmetic mean can be computed: 

 

𝑥̅ =  ∑ (x)/N   =  4695/8  =   586.875 m/secs. 

 

The fact that the arithmetic mean can be readily computed does not mean that it is 

meaningful or even useful.   Furthermore, the arithmetic mean has the weakness of being 

unduly influenced by small, or unusually large, values in a data set.   For example: five 

subjects are observed in an experiment and display the following reaction times: 120, 57, 

155, 210 and 2750 m/secs.   The arithmetic mean is 658.4 m/secs, a figure that is hardly 

typical of the distribution of reaction times. 

 

 

 

CHAPTER 2 

DESCRIPTIVE STATISTICS 

 
A. Introduction 

Descriptive statistics is the discipline of quantitatively describing the main features of a 

collection of data. Descriptive statistics are distinguished from inferential statistics (or 

inductive statistics), in that descriptive statistics aim to summarize a sample, rather than use 

the data to learn about the population that the sample of data is thought to represent. This 

generally means that descriptive statistics, unlike inferential statistics, are not developed on the 

basis of probability theory. Even when a data analysis draws its main conclusions using 

inferential statistics, descriptive statistics are generally also presented. For example in a paper 

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Inductive_statistics
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Probability


reporting on a study involving human subjects, there typically appears a table giving the overall 

sample size, sample sizes in important subgroups (e.g., for each treatment or exposure group), 

and demographic or clinical characteristics such as the average age, the proportion of subjects 

of each sex, and the proportion of subjects with related comorbidities.  

Descriptive statistics are used to describe the basic features of the data in a study. They 

provide simple summaries about the sample and the measures. Together with simple graphics 

analysis, they form the basis of virtually every quantitative analysis of data. 

Descriptive statistics are typically distinguished from inferential statistics. With 

descriptive statistics you are simply describing what is or what the data shows. With inferential 

statistics, you are trying to reach conclusions that extend beyond the immediate data alone. For 

instance, we use inferential statistics to try to infer from the sample data what the population 

might think. Or, we use inferential statistics to make judgments of the probability that an 

observed difference between groups is a dependable one or one that might have happened by 

chance in this study. Thus, we use inferential statistics to make inferences from our data to 

more general conditions; we use descriptive statistics simply to describe what's going on in our 

data. 

Descriptive Statistics are used to present quantitative descriptions in a manageable form. 

In a research study we may have lots of measures. Or we may measure a large number of 

people on any measure. Descriptive statistics help us to simply large amounts of data in a 

sensible way. Each descriptive statistic reduces lots of data into a simpler summary. For 

instance, consider a simple number used to summarize how well a batter is performing in 

baseball, the batting average. This single number is simply the number of hits divided by the 

number of times at bat (reported to three significant digits). A batter who is hitting .333 is 

getting a hit one time in every three at bats. One batting .250 is hitting one time in four. The 

single number describes a large number of discrete events. Or, consider the scourge of many 

students, the Grade Point Average (GPA). This single number describes the general 

performance of a student across a potentially wide range of course experiences.  

Every time you try to describe a large set of observations with a single indicator you run 

the risk of distorting the original data or losing important detail. The batting average doesn't 

tell you whether the batter is hitting home runs or singles. It doesn't tell whether she's been in 

a slump or on a streak. The GPA doesn't tell you whether the student was in difficult courses 

or easy ones, or whether they were courses in their major field or in other disciplines. Even 

given these limitations, descriptive statistics provide a powerful summary that may enable 

comparisons across people or other units. 

Descriptive statistics (DS) characterize the shape, central tendency, and variability of a 

set of data. When referring to a population, these characteristics are known as parameters; with 

sample data, they are referred to as statistics. 

 The description of a data set includes, among, other things: 

(a) Presentation of the data by tables and graphs. 

http://en.wikipedia.org/wiki/Sample_size
http://en.wikipedia.org/wiki/Demographic
http://en.wikipedia.org/wiki/Comorbidity
http://www.socialresearchmethods.net/kb/statinf.php


(b) Examination of the overall shape of the graphed data for important features, including 

symmetry or departures from it. 

(c) Scanning the graphed data for any unusual observation that seems to stick far out from the 

major mass of the data. 

(d) Computation of numerical measures for a typical or representative value of the center of 

the data. 

(e) Measuring the amount of spread or variation present in the data. 

Data (plural) are the measurements or observations of a variable. A variable is a 

characteristic that can be observed or manipulated and can take on different values. 

  

1. The Population and the Sample 

1.1.1.1.2 Population: A population is a complete collection of all elements (scores, people 

measurements, and so on). The collection is complete in the sense that it includes 

all subjects to be studied. 

 

Sample: A sample is a collection of observations representing only a portion of the population.  

 

Simple Random Sample: A Simple Random Sample (SRS) of measurements from a population 

is the one selected in such a manner that every sample of size n from the population has equal 

chance (probability) of being selected, and every member of the population has equal chance of 

being included in the sample. 

 

Example 2.1  To draw a SRS, consider the data below as our population. In a study of wrap 

breakage during the weaving of fabric (Technometrics, 1982, p63), one hundred pieces of yarn 

were tested. The number of cycles of strain to breakage was recorded for each yarn and the 

resulting data are given in the following table.  
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2. Graphical Description of Data 

a. Stem-and-Leaf  Plot 

One useful way to summarize data is to arrange each observation in the data into 

two categories “stems and leaves”.  First of all we represent all the observations by the 

same number of digits possibly by putting 0/s at the beginning or at the end of an 



observation as needed, or by rounding. If there are r digits in an observation, the first x 

(1≤x≤r) of them constitute stems and last (rx) digits called leaves are put against stems. 

If there are many observations in a stem (in a row), they may be represented by two 

rows by defining a rule for every stem. 

 

Example 1.2  Weaver (1990) examined a galvanized coating process for large pipes. 

Standards call for an average coating weight of 200 lbs per pipe. These data are the 

coating weights for a random sample of 30 student. 

 

216 202 208 208 212 202 193 208 206 206 

206 213 204 204 204 218 204 198 207 218 

204 212 212 205 203 196 216 200 215 202 

  

b. Frequency Tables 

 

When summarizing a large set of data it is often useful to classify the data into classes or 

categories and to determine the number of individuals belonging to each class, called the 

class frequency. A tabular arrangement of data by classes together with the corresponding 

frequencies is called a frequency distribution or simply a frequency table. Consider the 

following definitions: 

 

Class Width: The difference between the upper and lower class limit of a given class. 

Frequency: The number of observations in a class. 

Relative Frequency: The ratio of the frequency of a class to the total number of 

observations in the data set. 

Cumulative Frequency: The total frequency of all values less than the upper class limit. 

Relative Cumulative Frequency: The cumulative frequency divided by the total 

frequency. 

1.1.2 Example 1.3  Consider the data in Example 1.2. The steps needed to prepare a 

frequency distribution for the data set are described below: 

 

Step 1: Range = Largest observation – Smallest observation 

                        = 25193218  .  

Step 2: Divide the range between into classes of (preferably) equal width. A rule of thumb 

for the number of classes is n .  

 

Class width
classes ofNumber 

Range
  

 



Since we have a sample of size 30, the number of classes in the histogram should be 

around 48.530  . In this case, the class width would be approximately 

556.448.5/25  . The smallest observation is 193. The first class boundary may well 

start at 193 or little below it say at 190 (just to avoid the smallest observation, in general, 

falling on the class boundary). Thus the first class is given by (190, 195]. The second 

class is given by (195, 200]. Complete the class boundaries for all classes. In Statistica, 

the lower boundary of the first class is called the starting point, the class width or step 

size. 

 

Step 3: For each class, count the number of observations that fall in that class. This 

number is called the class frequency. 

Step 4: The relative frequency of a class is calculated by f/n where f is the frequency of 

the class and n is the number of observations in the data set.  

 

Cumulative Relative Frequency of a class, denoted by F, is the total of the relative 

frequencies up to that class. To avoid rounding in every class, one may cumulate the 

frequencies up to a class and then divide by n. The resulting quantity Relative Cumulative 

Frequency (F/n) is just the same as Cumulative Relative Frequency.  It is desirable in a 

frequency table. For the data in Example 2.2, we have the following frequency 

distribution: 

 

Class Count f F Relative f Relative F 
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c. Graphs with Frequency Distributions 

1) Frequency Histogram 

A frequency histogram is a bar diagram where a bar against a class represents frequency 

of the class. 

2) Frequency Plots 

The data of Example 2.2 have been summarized by a frequency distribution in Figure 

2.4. While we are in Basic Statistics and Tables, we may use Figure 2.4, frequency 

distribution to enter the midpoint of each interval in one column of the datasheet, 



another column to enter the count (frequency) of each interval (relative frequencies, 

cumulative relative frequencies can also be entered in two other columns). 

 

Use frequency or relative frequency or cumulative relative frequency as vertical axis 

as needed by the graph. 

 

(a) Frequency Plot: If frequencies of classes are plotted against the mid values of 

respective classes, the resulting scatter graph is called a Frequency Plot.  

(b) Frequency Curve: If the dots of the frequency plot are joined by a smooth curve 

the resulting curve is called a frequency curve.  

(c) Frequency Polygon: If the dots in a frequency plot are joined by lines, the resulting 

graph is called a Frequency Polygon. The polygon is sometimes extended to the 

midpoints of extreme adjacent classes (in both sides) with no frequencies. 

 

d. Bar Chart and Pie Chart 

 

Both bar and pie charts are used to represent discrete and qualitative data. A bar graph is 

a graphical representation of a qualitative data set. It gives the frequency (or relative 

frequency) corresponding to each category, with the height or length of the bar 

proportional to the category frequency (or relative frequency). The relative frequency of 

a category is calculated by f/n where f is the frequency of a category and n  is the number 

of observations in the data set. 

  

1) Bar Chart 

To make a bar chart, the classes are marked along the horizontal axis and a vertical 

bar of height equal to the class frequency is erected over the respective classes. 

 

2) Pie chart 

A Pie chart is made by representing the relative frequency of a category by an angle 

of a circle determined by: 

Angle of a category = Relative frequency of the category  360  

 

e. Numerical Measures 

Sometimes we are interested in a number which is representative or typical of the data set. 

Sample mean or median is such a number. Similarly, we define the range of the sample 

which gives some idea about the variation or dispersion of observations in the sample. 

The most important measure for dispersion is the sample standard deviation. 

 

f.  Box Plot 



A box aligned with first and the third quartiles as edges, median at the appropriate place 

in the scale is called a box plot. It is extended to both directions up to the smallest and the 

largest values. These extensions may be called arms. This technique displays the structure 

of the data set by using the quartiles and the extreme values of a sample. The qurartiles 

1 2 3,  and Q Q Q are three values that divide the ordered sample observations in 4 quarters 

approximately. 

 
B. Univariate Analysis 

Univariate analysis involves the examination across cases of one variable at a time. There are 

three major characteristics of a single variable that we tend to look at: 

 the distribution  

 the central tendency  

 the dispersion  

In most situations, we would describe all three of these characteristics for each of the variables 

in our study. 

The Distribution. The distribution is a summary of the frequency of individual values or 

ranges of values for a variable. The simplest distribution would list every value of a variable 

and the number of persons who had each value. For instance, a typical way to describe the 

distribution of college students is by year in college, listing the number or percent of students 

at each of the four years. Or, we describe gender by listing the number or percent of males and 

females. In these cases, the variable has few enough values that we can list each one and 

summarize how many sample cases had the value. But what do we do for a variable like income 

or GPA? With these variables there can be a large number of possible values, with relatively 

few people having each one. In this case, we group the raw scores into categories according to 

ranges of values. For instance, we might look at GPA according to the letter grade ranges. Or, 

we might group income into four or five ranges of income values. 

 
Table 1. Frequency distribution table.  

One of the most common ways to describe a single variable is with a frequency distribution. 

Depending on the particular variable, all of the data values may be represented, or you may 

group the values into categories first (e.g., with age, price, or temperature variables, it would 

usually not be sensible to determine the frequencies for each value. Rather, the value are 

grouped into ranges and the frequencies determined.). Frequency distributions can be depicted 



in two ways, as a table or as a graph. Table 1 shows an age frequency distribution with five 

categories of age ranges defined. The same frequency distribution can be depicted in a graph 

as shown in Figure 2. This type of graph is often referred to as a histogram or bar chart.  

 
Figure 2. Frequency distribution bar chart.  

Distributions may also be displayed using percentages. For example, you could use 

percentages to describe the:  

 percentage of people in different income levels  

 percentage of people in different age ranges  

 percentage of people in different ranges of standardized test scores  

Central Tendency. The central tendency of a distribution is an estimate of the "center" of a 

distribution of values. There are three major types of estimates of central tendency: 

 Mean  

 Median  

 Mode  

The Mean or average is probably the most commonly used method of describing central 

tendency. To compute the mean all you do is add up all the values and divide by the number 

of values. For example, the mean or average quiz score is determined by summing all the scores 

and dividing by the number of students taking the exam. For example, consider the test score 

values: 

15, 20, 21, 20, 36, 15, 25, 15 

The sum of these 8 values is 167, so the mean is 167/8 = 20.875. 

The Median is the score found at the exact middle of the set of values. One way to compute 

the median is to list all scores in numerical order, and then locate the score in the center of the 

sample. For example, if there are 500 scores in the list, score #250 would be the median. If we 

order the 8 scores shown above, we would get: 

15,15,15,20,20,21,25,36 

There are 8 scores and score #4 and #5 represent the halfway point. Since both of these scores 

are 20, the median is 20. If the two middle scores had different values, you would have to 

interpolate to determine the median. 



The mode is the most frequently occurring value in the set of scores. To determine the mode, 

you might again order the scores as shown above, and then count each one. The most frequently 

occurring value is the mode. In our example, the value 15 occurs three times and is the model. 

In some distributions there is more than one modal value. For instance, in a bimodal 

distribution there are two values that occur most frequently. 

Notice that for the same set of 8 scores we got three different values -- 20.875, 20, and 15 -- 

for the mean, median and mode respectively. If the distribution is truly normal (i.e., bell-

shaped), the mean, median and mode are all equal to each other. 

Dispersion. Dispersion refers to the spread of the values around the central tendency. There 

are two common measures of dispersion, the range and the standard deviation. The range is 

simply the highest value minus the lowest value. In our example distribution, the high value is 

36 and the low is 15, so the range is 36 - 15 = 21. 

The Standard Deviation is a more accurate and detailed estimate of dispersion because an 

outlier can greatly exaggerate the range (as was true in this example where the single outlier 

value of 36 stands apart from the rest of the values. The Standard Deviation shows the relation 

that set of scores has to the mean of the sample. Again lets take the set of scores: 

15,20,21,20,36,15,25,15 

to compute the standard deviation, we first find the distance between each value and the mean. 

We know from above that the mean is 20.875. So, the differences from the mean are: 

15 - 20.875 = -5.875 

20 - 20.875 = -0.875 

21 - 20.875 = +0.125 

20 - 20.875 = -0.875 

36 - 20.875 = 15.125 

15 - 20.875 = -5.875 

25 - 20.875 = +4.125 

15 - 20.875 = -5.875 

Notice that values that are below the mean have negative discrepancies and values above it 

have positive ones. Next, we square each discrepancy: 

-5.875 * -5.875 = 34.515625 

-0.875 * -0.875 = 0.765625 

+0.125 * +0.125 = 0.015625 

-0.875 * -0.875 = 0.765625 

   15.125 * 15.125 = 228.765625 

-5.875 * -5.875 = 34.515625 

+4.125 * +4.125 = 17.015625 

-5.875 * -5.875 = 34.515625 

Now, we take these "squares" and sum them to get the Sum of Squares (SS) value. Here, the 

sum is 350.875. Next, we divide this sum by the number of scores minus 1. Here, the result is 

350.875 / 7 = 50.125. This value is known as the variance. To get the standard deviation, we 



take the square root of the variance (remember that we squared the deviations earlier). This 

would be SQRT(50.125) = 7.079901129253. 

Although this computation may seem convoluted, it's actually quite simple. To see this, 

consider the formula for the standard deviation: 

√
∑(𝑋−𝑋̅)2

(𝑛−1)
                             (2.1) 

X= each score 

𝑋̅ = the mean or average 

n = the number of values 

∑ means we sum across the valuaes 

 

In the top part of the ratio, the numerator, we see that each score has the the mean subtracted 

from it, the difference is squared, and the squares are summed. In the bottom part, we take the 

number of scores minus 1. The ratio is the variance and the square root is the standard 

deviation. In English, we can describe the standard deviation as: 

the square root of the sum of the squared deviations from the mean divided by the 

number of scores minus one 

Although we can calculate these univariate statistics by hand, it gets quite tedious when you 

have more than a few values and variables. Every statistics program is capable of calculating 

them easily for you. For instance, I put the eight scores into SPSS and got the following table 

as a result: 

N 8 

Mean 20.8750 

Median 20.0000 

Mode 15.00 

Std. Deviation 7.0799 

Variance 50.1250 

Range 21.00 

which confirms the calculations I did by hand above. 

The standard deviation allows us to reach some conclusions about specific scores in our 

distribution. Assuming that the distribution of scores is normal or bell-shaped (or close to it!), 

the following conclusions can be reached: 

 approximately 68% of the scores in the sample fall within one standard deviation of the 

mean  

 approximately 95% of the scores in the sample fall within two standard deviations of the 

mean  

 approximately 99% of the scores in the sample fall within three standard deviations of the 

mean  



For instance, since the mean in our example is 20.875 and the standard deviation is 7.0799, we 

can from the above statement estimate that approximately 95% of the scores will fall in the 

range of 20.875-(2*7.0799) to 20.875+(2*7.0799) or between 6.7152 and 35.0348. This kind 

of information is a critical stepping stone to enabling us to compare the performance of an 

individual on one variable with their performance on another, even when the variables are 

measured on entirely different scales.  

 
C. Descriptive statistics for measurements of a single variable 

 

1. The basic idea 

 

We now deal with descriptive statistics for measurements of a single variable.  It is imagined 

that we have a large population of values from which we take samples.  The population 

could consist of the diameters of automobile drive shafts produced in a given plant.  To 

make sure the manufacturing equipment continues to operate satisfactorily, we measure the 

diameter of every tenth drive shaft.1  The measurements over a given time period are called 

“samples” of the “population” of all drive shafts.  The measurements will vary somewhat, 

both because of finite tolerances in the manufacturing equipment and because of 

uncertainties in the measurements themselves.  From the samples, we wish to make 

judgments about the underlying population, i.e. the actual diameters of all drive shafts made.  

For example, the mean (average) of the samples is expected to be approximately the true 

unknown mean of the population.   The accuracy of this sample estimate of the population 

mean would be expected to improve as the sample size is increased.  For example, if we 

measured every other drive shaft, we would expect the mean of our measurements to 

become closer to the actual average diameter of all drive shafts than when we measured 

only 1/10 of them. 

 

One of the primary objectives of statistics is to make quantitative statements.  For example, 

rather than just saying that the average drive shaft diameter is approximately equal to the 

sample mean, we’d like to give a range of diameters within which the true mean lies with a 

probability of 95%. 

 

2. The normal distribution 

 

The most common assumption made in statistical treatments of data is that the probability 

of a particular value x deviating from the population mean  is inversely proportional to the 

square of its deviation from the mean.  This gives rise to the familiar “bell-shaped curve” 

normal probability density function: 

               

                                                 
1 While we could measure every drive shaft, this is unnecessarily expensive. 
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where 2 the population variance, which is the mean of all values of (x - )2.  The factor 

 2/1 was chosen so that 




1dx)x(f .  The probability that a given sample x lies 

between a and b is 
b

a

dx)x(f ,2 which gives the fundamental meaning of the probability 

density function f.   

 

To illustrate the normal distribution, we present on the next page a MATLAB program to 

generate normally-distributed random numbers and compare the resulting histogram with 

equation 2.2.  To save time, you can cut and paste this program into MATLAB’s Editor, 

save in your working directory as ranhys.m, and then execute in MATLAB’s Command 

window by typing >> ranhys.  Try it for several values of the mean, variance and number 

of values, n.   Notice how the histogram approaches the shape3 of the normal distribution 

better and better as n is increased.  A histogram for  = 5, 2 = 2 and n = 500 is given as 

Figure 2.1 on the next page. 

 
% ranhys.m  W.R. Wilcox, Clarkson University, 1 June 2004. 
% Comparison of a histogram of normally distributed 
% random numbers with a normal distribution. 
% n is the number of samples 
% sigma is the sample standard deviation 
% mu is the sample mean 
% X is the vector of values 
clear 
n = input('Enter the number of values to be generated '); 
mu = input('Enter the population mean '); 
sigsq = input('Enter the population variance '); 
sigma = sqrt(sigsq); 
% Set the state for the random number generator 
% (See >>help randn) 
randn('state',sum(100*clock)); 
% Generate the random numbers desired 
X = mu + sigma*randn(n,1); 
% Plot the histogram with 10 bins (see >> help hist) 
hist(X,10), xlabel('value'), ylabel('number in bin') 
h = findobj(gca,'Type','patch'); 
set(h,'FaceColor','m','EdgeColor','w') 
hold on 
% Now create a curve for the normal distribution 
% (with a maximum equal to 1/4 of the number of values n) 
x = mu-4*sigma:sigma/100:mu+4*sigma; 

                                                 
2 That is, the area under the f(x) curve between a and b. 
3 Compare only the shape, as here the maximum in the normal distribution is arbitrarily set to n/4. 



f = 0.25*n*exp(-(x-mu).^2/2/sigma.^2); 
plot(x,f), legend('random number', 'normal distribution') 
title('Comparison of random number histogram with normal distribution 

shape') 
hold off 

 

Do you get the same histogram if you use the same values again for  , 2 and n?   Examine 

the code until you understand why.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Sample histogram for  = 5, 2 = 2 and n = 500. 

 

See http://www.shodor.org/interactivate/activities/NormalDistribution/ for a graphical 

illustration of the influence of population standard deviation on the normal distribution and 

the influence of bin size on a histogram. 

 

3. Tests to see if a population is normally distributed 

 

http://www.shodor.org/interactivate/activities/NormalDistribution/


Although normally distributed populations are common, many other distributions are known.  

If you have a set of data, how can you determine if the underlying population is normally 

distributed?  The short answer is that you cannot be 100% sure, as is typical of questions in 

statistics.  But there are several tests you can use to see if the answer is probably “yes.” 

Method 1:  Prepare a histogram and see if it looks normal.  This is only effective if the 

sample size is very large. 

Method 2:  A better method, particularly for smaller sample sizes, is to prepare a cumulative 

distribution plot.  The cumulative distribution is the fraction F of the sample 

values that are less than or equal to each particular value x.  A plot of F versus x 

can be compared to the cumulative distribution for a normal probability density 

function.  Integrating equation 2.1 we obtain: 
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where t is a dummy variable for integration and 
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 is called the error 

function, and is calculated by MATLAB using the command, for example, >> erf(0.5) .   

 

Beginning below is a MATLAB program to generate normally distributed random numbers 

and plot the cumulative distribution versus that given by equation 2.2.  Copy this into your 

MATLAB Editor, save it in your working directory as cumdist.m and execute >> cumdist 

in the MATLAB Command window.  Test the program for different values of the mean, 

variance and number of values.  Note how the resulting values become nearer and nearer the 

curve for a normal distribution (equation 2.2) as the number of values is increased. 

 
% cumdist.m    W.R. Wilcox, Clarkson University, 2 June 2004. 
% Comparison of cumulative distribution 
% for normally distributed random numbers 
% with integrated normal distribution 
% mu = population mean 
% sigma = square root of population variance 
% n = number of samples from population 
% X = vector of sample values 
clear, clc 
% Input the desired values of n, mu, sigma 
n = input('Number of values to be generated:  '); 
mu = input('Desired population mean:  '); 



sigsq = input('Desired population variance:  '); 
sigma = sqrt(sigsq); 
% Set the state for the random number generator 
% (See >>help randn) 
randn('state',sum(100*clock)); 
% Generate the random numbers desired 
X = mu + sigma*randn(n,1); 
% Sort the numbers 
X = sort(X); 
j = 1:n; 
% Generate the cumulative normal distribution curve: 
x = mu-4*sigma:sigma/100:mu+4*sigma; 
F = 1/2*(1+erf((x-mu)/sqrt(2)/sigma)); 
plot(X,(j-0.5)/n,x,F);  
xlabel('x');  
ylabel('fraction of values < x') 
legend('samples','normal distribution','Location','SouthEast') 
title('Cumulative distribution') 

 

Method 3:  An even better method is to plot the cumulative distribution on a scale that would 

give a straight line if the distribution were normal.  This is done by making the vertical scale 

erfinv(2*F-1), where erfinv is the inverse error function (i.e., x = erfinv(y) satisfies y = 

erf(x)).  Below is a MATLAB program that is the same as that above, except for the vertical 

scale.  Copy it into your MATLAB Editor, save it in your working directory as cumdistp2.m 

and execute       >> cumdistp2 in the MATLAB Command window.  Test the program for 

different values of the mean, variance and number of values.  Note the resulting values 

become nearer and nearer the straight line for a normal distribution (equation 2.2) as the 

number of values is increased, except for the very high and the very low values. 

 
% cumdistp2.m    W.R. Wilcox, Clarkson University, 2 November 2002. 
% Plot of cumulative distribution 
% for normally distributed random numbers 
% on normal distribution probability scale 
% mu = mean 
% sigma = population standard deviation 
% n = number of samples from population 
% X = vector of sample x values 
% F = fraction of values < x (cumulative distribution) 
% z = erfinv(2F-1) (search erfinv in MATLAB help) 
% For normal distribution get straight line for z versus x 
% Note that F =(1 + erf z)/2 
clear, clc 
% Input the desired values of n, mu, sigma 
n = input('Number of values to be generated:  '); 
mu = input('Desired population mean:  '); 
sigsq = input('Desired population variance:  '); 
sigma = sqrt(sigsq); 
% Set the state for the random number generator 
% (See >>help randn) 
randn('state',sum(100*clock)); 
% Generate the random numbers desired 
X = mu + sigma*randn(n,1); 
% Sort the numbers 
X = sort(X); 



% Generate z 
j=(1:n)'; F=(j-1/2)/n; z=erfinv(2*F-1); 
% Calculation of the normal distribution line: 
Xn(1)=mu-2*sqrt(2)*sigma; Xn(2)=mu+2*sqrt(2)*sigma; 
zn=[-2,2]; 
plot(X,z,'o',Xn,zn); 
xlabel('x'); ylabel('z = erfinv(2F-1)'); 
title('Cumulative distribution using a normal probability scale') 
legend('samples','normal distribution','Location','SouthEast') 

 

An example for 100 values with a population mean of 0 and a variance of 1 is given in Figure 

2.2. 

 
 

Figure 5.  Normally distributed "data" from a population with a mean of 0 and a variance of 1. 

 

Method 4:  While Method 3 is useful, it is not quantitative.  The "skewness" and "kurtosis" 

constitute quantitative measures of the normalcy of data.  The qualitative definitions below were 

taken from the PROPHET StatGuide: Glossary at the Northwestern University Medical School.  

They refer to histograms of the data. 

 

http://www.basic.nwu.edu/statguidefiles/sg_glos.html


"Skewness is a lack of symmetry in a distribution.  Data from a positively skewed (skewed to 

the right) distribution have values that are bunched together below the mean, but have a long 

tail above the mean. (Distributions that are forced to be positive, such as annual income, tend 

to be skewed to the right.) Data from a negatively skewed (skewed to the left) distribution 

have values that are bunched together above the mean, but have a long tail below the mean."  

 

"Kurtosis is a measure of the heaviness of the tails in a distribution, relative to the normal 

distribution. A distribution with negative kurtosis (such as the uniform distribution) is light-

tailed relative to the normal distribution, while a distribution with positive kurtosis (such as 

the Cauchy distribution) is heavy-tailed relative to the normal distribution." 

 

Mathematically, skewness and kurtosis are measured via:4 

 

skewness = g1  k3/k2
3/2 = k3/s

3 and kurtosis = g2  k4/k2
2= k3/s

4     

  (2.3) 

 

where s = k2
1/2 is the standard deviation and 
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with xi being the ith value of n samples from the population. 

 

d. Confidence limits on the mean 

 

From a sample, we can calculate the upper and lower limits for the unknown population mean  

with desired probability 1- using the following equation:4 

n

ts
x              

        (2.8) 

                                                 
4 From function   t(nu,alpha) 
sections 2.43, 4.33 and 5.33 of "Statistical Analysis in Chemistry and the Chemical Industry," by C.A. Bennett and 

N.L. Franklin, Wiley, NY (1954). 



where x  is the sample mean, s is the sample standard deviation, and t is Student's t, which is a 

function of  and the degrees of freedom  (nu). For a single variable, as considered here, =n-1.  

The relationship between ,  and t is given by the Incomplete Beta Function, which in MATLAB 

is called by the name betainc (see >> help betainc) and is, specifically:5  

  






 




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2

1
,

2
,

t
betainc

2
          

      (2.9) 

To test your understanding, find  for t = 2.2281 for a sample of 11 values.  

Unfortunately, MATLAB does not have an inverse incomplete beta function that would allow 

one to find t for a given  and .  Consequently, the following MATLAB function was created 

that gives t to within 0.001. 
 

% Calculation of Student's t from nu and alpha 
% W.R. Wilcox, Clarkson University, April 2005 
% nu is the degrees of freedom 
% alpha is the fractional uncertainty 
% A normal distribution of possible values is assumed 
% Accurate to within 0.001 
tp = 0.2:0.001:200;  
res = abs(betainc(nu./(nu+tp.^2),nu/2,1/2)-alpha); 
[minres,m]=min(res); 
if tp(m) == 200 
    fprintf('Student''s t is >= 200.  Choose a larger alpha.\n') 
elseif tp(m) == 0.2 
    fprintf('Student''s t is <= 0.2.  Choose a smaller alpha.\n') 
else fprintf('Student''s t is %4.3f\n', tp(m)); 
end 
end 

 

This function was used to prepare Figure 2.3.  The curve for  = 1000 is indistinguishable from 

that for a normal distribution, which corresponds to  =  and in MATLAB is given by: 

 

)1(erfinv2t             

       (2.10) 

 

It is interesting to compare the customary bell-shaped normal probability density function given 

by Equation 2.1 with that for Student’s t, which is given by  
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      (2.11) 

where 
s

xx
t


 , x  is the sample mean, ν = n – 1 is known as the degrees of freedom, and 

                                                 
5 See equations 22.5.1 & 22.5.27 and section 22.7 in "Handbook of Mathematical Functions," edited by M. 

Abramowitz and I.A. Stegun, Dover, NY (1925).   

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Gosset.html
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     (2.12) 

is the beta function, which MATLAB calculates using the function beta(z,w).  The program on the 

next page permits one to input arbitrary values of the mean and standard deviation.  The output is 

the probability density function for normal distribution and for selected values of ν (i.e., sample 

size minus 1).  Figure 2.4 shows the result.  Again note that the Student’s t distribution has broader 

tails and approaches the normal distribution as the sample size increases. 

 
Figure 2.3.  Plot of Student's t versus  and  

 

 
% Norm_vs_stud_t.m  
% William R. Wilcox, Clarkson University, November 2002 
%Comparison of the probability density function for a normal distribution 
%with that for a Student's t distribution, with a population mean mu    
% and standard deviation sigma input. 
mu = input('Enter the mean: ');  
sigma = input('Enter the standard deviation: ');  
x=mu-4*sigma:sigma/10:mu+4*sigma; 
fx_norm = (1/sigma/sqrt(2*pi))*exp(-(x-mu).^2/2/sigma^2); 
t=(x-mu)/sigma; 
nu = 2;  
fx_stud2 = 1/sigma*(1 + t.^2/nu).^(-(nu+1)/2)/sqrt(nu)/beta(1/2,nu/2); 
nu = 4;  
fx_stud4 = 1/sigma*(1 + t.^2/nu).^(-(nu+1)/2)/sqrt(nu)/beta(1/2,nu/2); 
nu = 8;  



fx_stud8 = 1/sigma*(1 + t.^2/nu).^(-(nu+1)/2)/sqrt(nu)/beta(1/2,nu/2); 
nu = 12;  
fx_stud12 = 1/sigma*(1 + t.^2/nu).^(-(nu+1)/2)/sqrt(nu)/beta(1/2,nu/2); 
nu = 32;  
fx_stud32 = 1/sigma*(1 + t.^2/nu).^(-(nu+1)/2)/sqrt(nu)/beta(1/2,nu/2); 
plot(x,fx_norm,x,fx_stud2,x,fx_stud4,x,fx_stud8,x,fx_stud12,x,fx_stud32);  
xlabel('x'); ylabel('f(x)'); 
titletext=['Probability density functions for mean of ',num2str(mu),' and SD 

of ',num2str(sigma)]; 
title(titletext); legend('normal','stud2','stud4','stud8','stud12','stud32') 

  

  

 

 

 

 

 
Figure 2.4.  Comparison of probability density function f(x) for a normal probability  

(Eq 2.1) with that for Student’s t (Eq 2.11) with sample sizes of 3, 5, 9, 17 and 33. 

 

 

D. Summary: descriptive statistics function 
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The descriptive statistics function has been prepared to make it easy for you to do these 

calculations using MATLAB.  Click on descriptive statistics function and go to File, Save 

as to save it in your working directory.  To execute it, >> descript(X), where X is the 

variable vector containing the data.  To illustrate the use of this function, we consider the 

weight of adult field mice in St. Lawrence County.  We trap mice using a Have-a-heart 

trap, weigh them, and then release them.  The resulting data are contained in mouse 

weights for sample sizes of 2, 3, 4, 5, 10 and 100 (that's a lot of mice!).  Save this file in 

your working directory. 

 

Now test the function descript.  Load mouse.mat into MATLAB by File, Import Data, 

mouse, and then Finish in the Import Wizard window.  Then the following: 

 

>> descript(M2) 

>> descript(M3) 

>> descript(M4) 

>> descript(M5) 

>> descript(M10) 

>> descript(M100) 

 

What can you conclude from these results? 6 

 

A google search reveals that there are a variety of textbooks and websites dealing with 

statistics, ranging from theory to history to on-line computational engines.  A couple of 

particularly useful web sites are: 

 

Web Pages that Perform Statistical Calculations 

NIST/SEMATECH e-Handbook of Statistical Methods 

 

Statistics is a deep subject of great usefulness for engineers and scientists.  Hopefully, you 

will want to learn more. 

 

 

 

 

 

 

 

 

 

                                                 
6 From this we can conclude that as more mice were weighed the resulting distribution became more normal and that 

the difference between the confidence limits for the mean decreased.  Note that these "data" were created using a 

population mean of 30 (g) and a variance of 25 ( = 5).  Knowing these parameters (which we usually don't) we can 

also see that as the sample size increases the sample mean becomes closer and closer to the population mean, and that 

the standard deviation of the sample approaches the square root of the population variance.  
 

http://www.clarkson.edu/~wilcox/ES100/descript.m
http://www.clarkson.edu/~wilcox/ES100/descript.m
http://www.clarkson.edu/~wilcox/ES100/mouse.mat
http://www.clarkson.edu/~wilcox/ES100/mouse.mat
http://members.aol.com/johnp71/javastat.html
http://www.itl.nist.gov/div898/handbook/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

PROBABILITY 
 

A. Introduction 

After careful study of this chapter you should be able to do the following: 

a.  Understand and describe sample spaces and events for random experiments with graphs, 

tables, lists, or tree diagrams 

b.  Interpret probabilities and use probabilities of outcomes to calculate probabilities of events 

in discrete sample spaces 

c.  Calculate the probabilities of joint events such as unions and intersections from the 

probabilities of individual events 

d.  Interpret and calculate conditional probabilities of events 

e. Determine the independence of events and use independence to calculate probabilities 

f. Use Bayes’ theorem to calculate conditional probabilities 

g. Understand random variables 

 

B. Sample Spaces And Events  

 

The sample space of a random experiment is a set S that includes all possible outcomes 

of the experiment; the sample space plays the role of the universal set when modeling the 



experiment. For simple experiments, the sample space may be precisely the set of possible 

outcomes. More often, for complex experiments, the sample space is a mathematically 

convenient set that includes the possible outcomes and perhaps other elements as well. For 

example, if the experiment is to throw a standard die and record the outcome, the sample space 

is S = {1, 2, 3, 4, 5, 6}, the set of possible outcomes. On the other hand, if the experiment is to 

capture a cicada and measure its body weight (in milligrams), we might conveniently take the 

sample space to be S = [0, ), even though most elements of this set are practically impossible. 

Certain subsets of the sample space of an experiment are referred to as events. Thus, an 

event is a set of outcomes of the experiment. Each time the experiment is run, a given 

event A either occurs, if the outcome of the experiment is an element of A, or does not occur, 

if the outcome of the experiment is not an element of A. Intuitively, you should think of an 

event as a meaningful statement about the experiment. 

The sample space S itself is an event; by definition it always occurs. At the other extreme, 

the empty set Ø is also an event; by definition it never occurs. More generally, if A and B are 

events in the experiment and A is a subset of B, then the occurrence of A implies the occurrence 

of B. 

Set theory is the foundation of probability, as it is for almost every branch of 

mathematics. In probability, set theory is used to provide a language for modeling and 

describing random experiments. 

Definition S : sample space, all possible outcomes 

Example: tossing a coin, },{ THS   

Example: reaction time to a certain stimulus, ),0( S  

Sample space: may be countable or uncountable 

Countable: put 1-1 correspondence with a subset of integers 

Finite elements   countable 

Infinite elements   countable or uncountable 

Fact: There is only countable sample space since measurements cannot be made with infinite 

accuracy 

 

Definition event: any measurable collection of possible outcomes, subset of S  

If SA  , A  occurs if outcome is in the set A . 

http://www.ds.unifi.it/VL/VL_EN/prob/prob1.html


)(AP : probability of an event (rather than a set) 

 

Theorem CBA ,, : events on S  

(1). Commutativity ABBA  , ABBA   

(2). Associativity CBACBA  )()( , CBACBA  )()(  

(3). Distributive Laws )()()( CABACBA   

)()()( CABACBA   

(4). DeMorgan’s Law 
ccc BABA  )( , 

ccc BABA  )(  

 

Example: (a) If ]1,0(S , 
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(b) If )1,0(S , 
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Definition (a) BA,  are disjoint if  BA . 

(b) 21 , AA  are pairwise disjoint if  ji AA , ji  . 

 

Definition 21 , AA  are pairwise disjoint and SA
i

i 





1

, then 21 , AA  form a partition of 

S . 

Number of Outcomes of an Event 

 

As an example, we may have an event Edefined as 

E = "day of the week" 

 

We write the "number of outcomes of eventE" as n(E). 

So in the example,  n(E) = 7, since there are 7 days in the week. 

 

Addition Rule 

 

Let E1 and E2 be mutually exclusive events (i.e. there are no common outcomes). 

Let event E describe the situation where either event E1 or event E2 will occur. 

The number of times event E will occur can be given by the expression: 

 

n(E) = n(E1) + n(E2) 



 

Tip 

In counting and probability,"OR" usually requires us toADD. 

where 

n(E) = Number of outcomes of event E 

n(E1) = Number of outcomes of event E1 

n(E2) = Number of outcomes of event E2 

[We see more on mutually exclusive events later in this chapter.] 

 

Example 1 

Consider a set of numbers S = {-4, -2, 1, 3, 5, 6, 7, 8, 9, 10} Let the events E1, E2 and E3 be 

defined as: 

 

E = choosing a negative or an odd number from S; 

E1= choosing a negative number from S; 

E2 = choosing an odd number from S. 

Find n(E). 

 

Example 2 

In how many ways can a number be chosen from 1 to 22 such that 

(a) it is a multiple of 3 or 8? (b) it is a multiple of 2 or 3? 

 

Multiplication Rule 

 

Now consider the case when two events E1 and E2 are to be performed and the 

events E1 and E2 are independent events i.e. one does not affect the other's outcome. 

 

Example 

 

Say the only clean clothes you've got are 2 t-shirts and 4 pairs of jeans. How many different 

combinations can you choose? 

 

Answer 

We can think of it as follows: 

http://www.intmath.com/counting-probability/9-mutually-exclusive-events.php


 
We have 2 t-shirts and with each t-shirt we could pick 4 pairs of jeans. Altogether there are 

2 × 4 = 8 possible combinations. 

We could write 

E1 = "choose t-shirt" and 

E2 = "choose jeans" 

 

Multiplication Rule in General 

 

Suppose that event E1 can result in any one of n(E1) possible outcomes; and for each outcome 

of the event E1, there are n(E2) possible outcomes of event E2. 

Together there will be n(E1) × n(E2) possible outcomes of the two events. 

 

Tip 

 

In counting and probability,"AND" usually requires us to MULTIPLY. 

That is, if event E is the event that both E1 and E2 mustoccur, then 

n(E) = n(E1) × n(E2) 

 

In our example above, 

n(E1) = 2 (since we had 2 t-shirts) 

n(E2) = 4 (since there were 4 pairs of jeans) 

So total number of possible outcomes is given by: 

n(E) = n(E1) × n(E2) = 2 × 4 = 8 

 

 

Example 3 

What is the total number of possible outcomes when a pair of coins is tossed? 

 

Example 4 

The life insurance policies of an insurance company are classified by:  

age of the insured: 

under 25 years, 



between 25 years and 50 years, 

over 50 years old; 

sex; 

marital status: 

single or 

married. 

What is the total number of classifications? 

 

C.  Basic Probability Theory 

A : event in S , ]1,0[: AP , 1)(0  AP : probability of A  

Domain of P : all measurable subsets of S  

 

Definition  (sigma algebra,  -algebra, Borel field): collection of subsets of S  satisfies (a) 

  (b) if  cAA  (closed under complementation)  

(c) if 





1

21 ,,
i

iAAA  (closed under countable unions) 

 

Properties (a) S  (b) 





1

21 ,,
i

iAAA  

 

Example: (a) },{ S : trivial  -algebra 

(b) smallest  -algebra that contains all of the open sets in S = {all open sets in S }=




  (intersection on all possible  -algebra) 

 

Definition Kolmogorov Axioms (Axioms of Probability) 

Given ),( S , probability function is a function P  with domain   satisfies 

(a) 0)( AP , A  (b) 1)( SP  (c) If ,, 21 AA , pairwise disjoint 

 )()( ii APAP  (Axiom of countable additivity) 

 

Exercise: axiom of finite additivity + continuity of P (if 0)(  nn APA  )   axiom of 

countable additivity  

 

Theorem If A , P : probability 

(a) 0)( P  (b) 1)( AP  (c) )(1)( APAP c   

 

Theorem (a) )()()( BAPBPABP c   

(b) )()()()( BAPBPAPBAP   

(c) BA  , then )()( BPAP   

 

Bonferroni’s Inequality 1)()()(  BPAPBAP  



 

Example: (a) )(95.0)( BPAP  , 9.01)()()(  BPAPBAP  

(b) 3.0)( AP , 5.0)( BP , 2.015.03.0)(  BAP , useless but correct 

Theorem (a) 

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iCAPAP , for any partition ,, 21 CC  

(b) 
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i

i

i

i APAP   for any ,, 21 AA  (Boole’s inequality) 

 

General version of Bonferroni inequality: )1()()(   nAPAP ii  
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Let nA  be a sequence of sets. The set of all points   that belong to nA  for infinitely 

many values of n  is known as the limit superior of the sequence and is denoted by 

n
n

A


suplim  or n
n

A


lim .  

The set of all points that belong to nA  for all but a finite number of values of n  is 

known as the limit inferior of the sequence }{ nA  and is denoted by 
n

n
A


inflim  or n

n

A


lim . If 

n
n

n
n

AA


 limlim , we say that the limit exists and write 
n

n
A


lim  for the common set and call it 

the limit set.  

We have n
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If the sequence }{ nA  is such that 1 nn AA , for ,2,1n , it is called nondecreasing; if  

1 nn AA , ,2,1n , it is called nonincreasing. If the sequence nA  is nondecreasing, or 

nonincreasing, the limit exists and we have  







1

lim
n

nn
n

AA  if nA  is nondecreasing and 
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AA  if nA  is nonincreasing. 

 



Theorem Let }{ nA  be a nondecreaing sequence of events in S ; that is SAn  , ,2,1n , 

and 1 nn AA , .,3,2 n  Then  
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The second term on the right tends to zero as n  since the sum 1)(
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1 
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jj AAP  and 

each summand is nonnegative. The result follows. 

 

Corollary Let }{ nA  be a nonincreasing sequence of events in S . Then 

 )()lim()(lim
1








n

nn
n

n
n

APAPAP . 

Proof. Consider the nondecreasing sequence of events }{ c

nA . Then  
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It follows from the above Theorem that 

 )()()lim()(lim
1

c

j

c

n

c

n
n

c

n
n

APAPAPAP 





 . 

Hence, )(1))(1(lim APAP n
n



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Example (Bertrand’s Paradox) A chord is drawn at random in the unit circle. What is the 

probability that the chord is longer than the side of the equilateral triangle inscribed in the 

circle? 

 

Solution 1. Since the length of a chord is uniquely determined by the position of its midpoint, 

choose a point C  at random in the circle and draw a line through C  and O , the center of the 

circle. Draw the chord through C  perpendicular to the line OC . If 1l  is the length of the 



chord with C  as midpoint, 31 l  if and only if C  lines inside the circle with center O  and 

radius 21 . Thus 41)21()( 2  AP .  

 

Solution 2. Because of symmetry, we may fix one endpoint of the chord at some point P  and 

then choose the other endpoint 1P  at random. Let the probability that 1P  lies on an arbitrary 

arc of the circle be proportional to the length of this arc. Now the inscribed equilateral 

triangle having P  as one of its vertices divides the circumference into three equal parts. A 

chord drawn through P  will be longer than the side of the triangle if and only if the other 

endpoint 1P  of the chord lies on that one-third of the circumference that is opposite P . It 

follows that the required probability is 31 . 

 

Solution 3. Note that the length of a chord is determined uniquely by the distance of its 

midpoint from the center of the circle. Due to the symmetry of the circle, we assume that the 

midpoint of the chord lies on a fixed radius, OM , of the circle. The probability that the 

midpoint M  lies in a given segment of the radius through M  is then proportional to the 

length of this segment. Clearly, the length of the chord will be longer than the side of the 

inscribed equilateral triangle if the length of OM  is less than 2radius . It follows that the 

required probability is 21 . 

 

Question: What’s happen? Which answer(s) is (are) right? 

 

Example: Consider sampling 2r  items from 3n  items, with replacement. The outcomes 

in the ordered and unordered sample spaces are these. 

Unordered {1,1} {2,2} {3,3} {1,2} {1,3} {2,3} 

Probability 1/6 1/6 1/6 1/6 1/6 1/6 

Ordered  (1,1) (2,2) (3,3) (1,2), 

(2,1) 

(1,3), 

(3,1) 

(2,3), 

(3,2) 

Probability 1/9 1/9 1/9 2/9 2/9 2/9 

Which one is correct? 

 

Hint: The confusion arises because the phrase “with replacement” will typically be 

interpreted with the sequential kind of sampling, leading to assigning a probability 2/9 to the 

event {1, 3}. 

 

D.  Conditional Probability and Independence 

Definition Conditional probability of A  given B  is 
)(

)(
)|(

BP

BAP
BAP


 , provided 

0)( BP . 

 



Remark: (a) In the above definition, B  becomes the sample space and 1)|( BBP . All 

events are calibrated with respect to B . 

(b) If  BA  then 0)(  BAP  and 0)|()|(  ABPBAP . Disjoint is not the same as 

independent.  

 

Definition A  and B  are independent if )()|( APBAP  .  

(or )()()( APBPBAP  ) 

 

Example: Three prisoners, A , B , and C , are on death row. The governor decides to pardon 

one of the three and chooses at random the prisoner to pardon. He informs the warden of his 

choice but requests that the name be kept secret for a few days.  

The next day, A  tries to get the warden to tell him who had been pardoned. The warden 

refuses. A  then asks which of B  or C  will be executed. The warden thinks for a while, then 

tells A  that B  is to be executed. 

Warden’s reasoning: Each prisoner has a 1/3 chance of being pardoned. Clearly, either B  

or C  must be executed, so I have given A  no information about whether A  will be 

pardoned. 

A ’s reasoning: Given that B  will be executed, then either A  or C  will be pardoned. My 

chance of being pardoned has risen to 1/2. 

Which one is correct?  

 

Bayes’ Rule ,, 21 AA : partition of sample space, B : any set, 







)()|(

)|()(

)(

)(
)|(

jj

iii

i
APABP

ABPAP

BP

BAP
BAP . 

 

Example: When coded messages are sent, there are sometimes errors in transmission. In 

particular, Morse code uses “dots” and “dashes”, which are known to occur in the proportion 

of 3:4. This means that for any given symbol, 

7

3
)( sentdotP  and 

7

4
)( sentdashP . 

Suppose there is interference on the transmission line, and with probability 1/8 a dot is 

mistakenly received as a dash, and vice versa. If we receive a dot, can we be sure that a dot 

was sent?  

 

Theorem If BA   then (a) cBA  , (b) BAc  , (c) cc BA  . 

 

Definition nAA ,,1  : mutually independent if any subcollection iki AA ,,1   then 







k

j

ij

k

j

ij APAP
11

)()( . 

 

E.  Random Variable 

Definition Define SX : new sample space  . 

X : random variable, SX : , ),(),( XPPS  , where XP : induced probability 

function on   in terms of original P  by  

}))(:({)( ijjiX xsXSsPxXP  ,  

and XP  satisfies the Kolmogorov Axioms. 

 

Example: Tossing three coins, X : # of head 

S = {HHH

, 

HHT, HTH, THH, TTH, THT, HTT, TTT} 

X : 3 2 2 2 1 1 1 0 

 

 

        

Therefore, }3,2,1,0{ , and  

8

3
},,{})1)(:({)1(  HTTTHTTTHPsXSsPXP jjX

. 

 

F. Distribution Functions 

With every random variable X , we associate a function called the cumulative distribution 

function of X . 

 

Definition The cumulative distribution function or cdf of a random variable X , denoted by 

)(xFX , is defined by )()( xXPxF XX  , for all x . 

 

Example: Tossing three coins, X : # of head  )3,2,1,0( X , the corresponding c.d.f. is                 


























xif

xif

xif

xif

xif

xFX

31

328/7

212/1

108/1

00

)( , 

where XF : (a) is a step function 

          (b) is defined for all x , not just in }3,2,1,0{  

          (c) jumps at ix , size of jump )( ixXP   

          (d) 0)( xFX  for 0x ; 1)( xFX  for 3x  

          (e) is right-continuous (is left-continuous if )()( xXPxF XX  ) 

  

Theorem )(xF  is a c.d.f.   (a) 0)(lim 


xF
x

, 1)(lim 


xF
x

. 



                          (b) )(xF : non-decreasing 

                          (c) )(xF : right-continuous 

 

Example: Tossing a coin until a head appears. Define a random variable X : # of tosses 

required to get a head. Then 

        ppxXP x 1)1()(  ,      ,2,1x ,     10  p . 

The c.d.f. of the random variable X  is  
x

X pxXPxF )1(1)()(  ,       ,2,1x . 

It is easy to check that )(xFX  satisfies the three conditions of c.d.f. 

 

Example: A continuous c.d.f. (of logistic distribution) is 
xX

e
xF




1

1
)( , which satisfies the 

three conditions of c.d.f.  

 

Definition (a) X  is continuous if )(xFX  is continuous. 

(b) X  is discrete if )(xFX  is a step function. 

 

Definition X  and Y  are identical distributed if  A , )()( AYPAXP  . 

 

Example: Tossing a fair coin three times. Let X : # of head and Y : # of tail. Then  

           )()( kYPkXP  ,    3,2,1,0k . 

But for each sample point s , )()( sYsX  . 

 

Theorem X  and Y  are identical distributed )()( xFxF YX  ,  x . 

 

F. Density and Mass Function 

Definition The probability mass function (p.m.f.) of a discrete random variable X  is  

)()( xXPxf X     for all x . 

 

Example: For the geometric distribution, we have the p.m.f. 



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And  )( xXP size of jump in c.d.f. at x ,  
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X ppkfbXaP 1)1()()( , 

            )()()(
1

bFkfbXP X
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k

X  


 . 

Fact: For continuous random variable (a) 0)(  xXP ,  x . 

(b)  


x

XX dttfxFxXP )()()( . Using the Fundamental Theorem of Calculus, if )(xf X  

is continuous, we have  



)()( xfxF
dx

d
XX  . 

 

Definition The probability density function or pdf, )(xf X , of a continuous random variable 

X  is the function that satisfies  

 


x

XX dttfxF )()(   for all x . 

 

Notation: (a) )(~ xFX X , X  is distributed as )(xFX . 

(b) YX ~ , X  and Y  have the same distribution. 

 

Fact: For continuous, )()()()( bXaPbXaPbXaPbXaP  . 

 

Example: For the logistic distribution  

xX
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1
)( , 

we have 
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X
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XXX dxxfdxxfdxxfaFbFbXaP )()()()()()( . 

 

Theorem )(xf X : pdf (or pmf) of a random variable if and only if  

(a) 0)( xf X ,   x . 

(b)  1)(xf X  (pmf) or 1)( 



dxxf X  (pdf). 

 

Fact: For any nonnegative function with finite positive integral (or sum) can be turned into a 

pdf (or pmf)  

   kdxxf )(  then 
k

xf
xg

)(
)(  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

PROBABILITY DISTRIBUTIONS 1 

(DISCRETE RANDOM VARIABLES) 

 

A. Discrete Random Variables  

1. Basic concept of random variable  

 In the world, lots of numerical values come from outcomes controlled by random 

probability. 

 Examples: 

 wins or losses of money based on random outcomes of tossing coins; 

 differences between bus arriving times and scheduled ones due to random traffic 

conditions; 

 measures of body temperatures due to random day-to-day body conditions, etc. 

 The numerical values are variable  and random in nature due to the occurrence 

probabilities of them. They so may be called random variables. 



 

2. Formal definition of random variable  

 A brief review of the concept of function --- 

A function f with domain A and range B is a mapping from A to B such that each 

value a  A is mapped to a unique value b  B, denoted as f(a), i.e., we write f(a) = b. 

 Definition 4.1 --- 

A random variable is a real-valued function of outcomes, as illustrated in the 

following: 

outcomes 
random variable

  real values. 

 The domain of a random variable is the sample space, and the range is the set of real 

numbers. 

 Examples of random variables: 

 the sum of the outcomes of tossing two dices; 

 the money you win in a fair card-drawing game; 

 the number of students who fail in a course; 

 the number of accidents in a city in a year, etc. 

 We may assign probabilities to random variables according to the probabilities of 

related outcomes. 

 

Consider a dice with the following information: 

X = Output 1 with the probability of 1/2 

X = Output 2 with the probability of 1/3  

X = Output 3 with the probability of 1/6 

 

 

Hence, E(X) = ∑ x.P(x) 

           x є X 

 

 E(X) = 1.(1/2) + 2.(1/3) + 3(1/6) = 1 + 2/3 = 5/3 

 

Thus, any variable that has probabilities of equaling different values is a discrete random 

variable. We calculate the average or expected value of that discrete random variable using the 

formula above. As an exercise, let Y be the discrete random variable equal to the sum of the 

faces after rolling two standard six-sided dice. Show that E(Y) = 7. 

 

In addition to expectation, we define a term called variance for discrete random variables. (This 

calculation is rarely made in computer science for algorithm analysis, but I am including it for 

completeness sake with respect to the topic of discrete random variables.) Variance is simply 



a definition which roughly gauges, "how spread out" the distribution of the discrete random 

variable is. Here is the formula: 

 

  



Xx

xpXExXVar 2)(()(  

For our example above, we have  

 

95)61()353()31()352()21()351()( 222 XVar  

 

Also, the standard deviation of a discrete random variable is simply defined as the square root 

of its variance. An alternate way to calculate variance is as follows: 

 

  
22 )]([)()( XEXEXVar   

We define E(X2) as follows: 



Xx

xpxXE 22 )(  

 

 

Example 4.1  

In tossing two dices, what is the probability of obtaining a sum X smaller than 5 points? 

Solution: 

 The event A for X < 5 is A = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 2)} which has 6 

elements. 

 The sample space S has 36 elements, as is well known. 

 So, according to Fact 2.3 of Chapter 2, the desired probability is: 

P(A) = 
#

#

points in A

points in S
 = 6/36. 

 By Definition 4.1, X here is just a random variable, with its domain being S and A being 

a subset of it. 

 

A note about the notation for events: 

Subsequently, we use the notation X < 5 to denote the event A itself and write P(A) as 

P{X < 5}. Notations for more general cases, like P{X  n}, are similarly defined. 

 

Example 4.2  

Three balls are drawn from an urn containing 3 white, 3 red, and 5 black balls. Suppose 

we win one dollar for each white ball drawn and lose one for each red ball drawn. What is 

the probability we win money in a draw? 

Solution: 

 Key concept: define first a random variable X as the amount of money won in a draw. 

 And the probability of winning money is P{X > 0} where X > 0 is the event. 



 Experiment = drawing 3 balls. 

 #outcomes in the sample space S = C(11, 3). 

 Possible values of X = 0, ±1, ±2, ±3 (i.e., winning or losing at most 3 dollars). 

 So the desired probability is P{X > 0} = P{X = 1, 2, 3}. 

 Now,  

P{X = 0} = P{draw 3 black, or draw 1 white, 1 red, & 1 black} 

= [C(5, 3) + C(3, 1)C(3, 1)C(5, 1)]  C(11, 3) (by Fact 2.3) 

= 55/165. 

 P{X = 1} = P{draw 1 white & 2 black, or draw 2 white & 1 red} 

= P{X = 1} = P{draw 1 red & 2 black, or draw 2 red & 1 white} 

= [C(3, 1)C(5, 2) + C(3, 2)C(3,1)]  C(11, 3) = 39 /165.  (by Fact 2.3) 

 Similarly with the reasoning details omitted (check by yourself!), we have 

 P{X = 2} = P{X = 2}  

= C(3, 2)C(5, 1)  C(11, 3) = 15/165.  (by Fact 2.3) 

 And  

 P{X = 3} = P{X = 3}  

= C(3, 3)  C(11, 3) = 1/165.  (by Fact 2.3) 

 Finally, the desired probability of winning money is: 

 P{X = 1, 2, or 3} 

 = P{X = 1} + P{X = 2} + P{X = 3}  (by mutual exclusiveness) 

 = 39/165 + 15/165 + 1/165 

 = 55/165 

 = 1/3. 

 

Notation: 

P – this means “probability” 

A, B, C, … – these stand for events 

Ac, A – this means the complement of A 

P(A) – this means the probability that A occurs 

S – this is used to denote the sample space 

 

Example:  

Q: Bob rolls a 6-sided die. What is the sample space of this procedure? 

A: S = {1, 2, 3, 4, 5, 6} 

 

Q: Sue measures how many coin flips it takes to get 3 heads. What is the sample space of this 

procedure? 

A: S = {3, 4, 5, …} = {all integers > 2} 

 



Q: Fred sees what proportion of cars on his block are SUVs.  What is the sample space of this 

procedure? 

A: S = {any real number between 0 and 1} = [0,1] 

 

Since events come in a lot of different ways, there are 3 general approaches to finding the 

probabilities for events.  The method that is most useful depends on the situation. 

 

Approach #1: Relative Frequency Approximation 

For procedures that can be repeated over and over again, we can estimate the probability of 

an event A by using the following: 

 

Trials ofNumber  Total

OccurredA  Times ofNumber 
p  

 

From theoretical arguments (see “Law of Large Numbers”, p.141), it turns out that this value 

p will get closer to P(A) as the number of trials gets larger. 

 

Approach #2: Classical Approach 

For procedures with equally likely outcomes (e.g. rolling a die, flipping a coin, etc.), we can 

find P(A) directly, by computing: 

 

OutcomesEvent  Simple ofNumber  Total

Occurcan    WaysofNumber 
)(

A
AP   

 

Approach #3: Subjective Probability 

For procedures that cannot be repeated, and do not have equally likely outcomes, the true 

probability of an event is usually not able to be determined.  In situations like this, we can 

estimate the probability using our knowledge and experience of the subject.  For instance, we 

could ask “What is the probability that the Columbus Blue Jackets will win the Stanley Cup 

this year?”  No one knows the true probability, but people who know a lot about hockey 

could give a ballpark figure. 

 

Examples: 

A situation where Approach #1 is used is in baseball.  If we want to know the probability that 

a player will get a hit when they go up to bat, we cannot use Approach #2 because the 

outcomes are not equally likely.  We could use Approach #3, but that would be subjective.  

However, by dividing the number of hits by the number of at-bats gives the batting average, 

which is an estimate of the true probability of getting a hit. 

 



A situation where Approach #2 is used is something like rolling a die.  Each face is equally 

likely to turn up, so we can find probabilities using this approach.  Let’s say A is the event of 

rolling an even number.  What is P(A)? 

5.0
2

1

outcomes) possible (6

        6)or  4, 2, (getting 

6

3

OutcomesEvent  Simple ofNumber  Total

Occurcan    WaysofNumber 
)( 

A
AP  

 

3. Another Example 
Q: Joe flips one coin 3 times and records the 3 outcomes.  What is the sample space?   

A: S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

 

Q: What is the probability of getting 1 or 2 heads? 

A: Since all outcomes are equally likely (we assume the coin is fair), we can use 

Approach #2. 

 

75.0
4

3

                        outcomes) 8 of (Total

THH)TTH,THT,HTT,HTH,(HHT,

8

6

OutcomesEvent  Simple ofNumber  Total

Occurcan    WaysofNumber 
)( 

A
AP  

 

Q: What is the probability of the complement of the previous event? (i.e. P(not 1 or 2 

heads)) 

A: There are 2 ways this can happen (HHH or TTT), so it will be 25.0
4

1

8

2
  

4. Odds 
Another popular way to describe probabilities is with odds.  Odds are ratios of success 

to failure, or vice versa. 

Odds against A – this is the ratio 
)(

)(

AP

AP c

, often written in the form a : b, where a and b 

are integers with no common factor. 

Odds in favor of A – this is the ratio 
)(

)(
cAP

AP
, which would be written as b : a. 

Payoff Odds – this is the ratio 
BetAmount 

ProfitNet 
, written as (Net Profit) : (Amount Bet). 

 

Example: 

Q: You are playing the slots.  It costs $5 to pull the lever.  The prize if you win is $500.  

The probability of winning is 0.20, and the  

 probability of losing is 0.80.  Find all three odds listed above. 

A: Let A be the event of winning the game. 

 
1

4

20.0

80.0

)(

)(
nningAgainst Wi Odds

AP

AP c

Odds against winning is 4:1 

 
4

1

80.0

20.0

)(

)(
 WinningofFavor in  Odds

cAP

AP
Odds in favor of winning is 1:4 



 
1

99

5

495

Bet ofAmount 

Bet ofAmount -Prize

AmountBet 

ProfitNet 
Odds Payoff Payoff Odds is 99:1 

 So the Odds Against and Odds in Favor are telling you that when you play the 

game 5 times, you will win once and lose 4 times,  

 on average.  The Payoff Odds is telling you that if you win, you’ll get back 99 

times what you bet.  This game would be a good one  

 to play, because it takes you about 5 games (on average) to win, but you win 99 

times what you bet. 

 

5. Addition Rule 

 

Compound Event – An event that is comprised of two or more simple events. 

Generally, compound events are written in terms of their simple events. 

For example, the event “It will rain or snow today” could be written as “A or B”, where 

A is the event that it rains today and B is the event that it snows today.  So this event 

would happen if it rained today, snowed today, or both. 

Another type of event is of the form “A and B”, in which the event only occurs if both A 

and B occur. 

For example, the event “It is at least 70 degrees and sunny outside” could be written as 

“A and B”, where A is the event that it is at least 70 degrees outside, and B is the event 

that it is sunny. 

 

a. The Formal Addition Rule 
To see how this rule is derived, let’s examine a Venn Diagram.  The area within each 

circle corresponds to the probability of that event occurring.  Where the two circles 

overlap (dark grey), both A and B occur.  However the area, say, in circle A that does 

not overlap B (grey) would be when A occurs but B does not.  The area outside of both 

circles (light grey) corresponds to neither A nor B occurring. 

 

 

 

 

 

 

 

 

 

 

 

 

How would we find P(A or B) then?  We want the area within the two circles (the 

grey and dark grey areas) because that’s where A happens, B happens, or they both 



happen.  What we could do is add together the area in circle A, and the area of circle 

B.  The problem is that we could the overlapping area (dark grey) twice.  That means 

we need to subtract it.  Using the fact that the area in circle A is P(A), the area in 

circle B is P(B), and the overlap is P(A and B), we get the formal addition rule: 

 

P(A or B) = P(A) + P(B) – P(A and B) 

 

This rule works for any events A and B.  Anytime you know three of the four 

quantities in the equation, you can solve for the fourth. 

 

b. Disjoint Events 
Disjoint Events are events that cannot both happen at the same time.  For example, 

let A be the event that a traffic light is green, and B be the event that the traffic light 

is red.  The event “A and B” cannot happen, because traffic lights are never green and 

red at the same time.  If two events are disjoint, then P(A and B) = 0.  Disjoint events 

are also often called mutually exclusive events. 

 

c. Addition Rule for Disjoint Events 
Using the fact that P(A and B) = 0 for disjoint events, we can rewrite the formal 

addition rule as: 

 

P(A or B) = P(A) + P(B) 

 

d. Complementary Events 
Recall from the previous section that for an event A, its complement Ac is the event 

that A does not occur.  Since Ac only happens when A does not, and vice versa, P(A 

and Ac) = 0.  In other words, A and Ac are disjoint.  Therefore, P(A or Ac) = P(A) + 

P(Ac), by the addition rule for disjoint events.  But what is P(A or Ac)?  This means the 

probability that either A happens, or A does not happen.  This probability is 1, since 

something has to happen, whether it is A or not.  Therefore, we have a trio of equivalent 

formulas: 

 

P(A) + P(Ac) = 1 

P(Ac) = 1 – P(A) 

P(A) = 1 – P(Ac) 

 

 

 

Examples: For the following questions, imagine we are drawing one card from a deck 

of 52 cards. 

Q: What is the probability of drawing a queen? 

A: Using Approach #2 from the previous section, and letting A be the event in 

question, 
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Q: What is the probability of drawing a diamond? 

A: Using Approach #2 from the previous section, and letting B be the event in 

question, 
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Q: What is the probability of drawing a queen of diamonds? 

A: This is the event “A and B”, and we can use Approach #2 again: 
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Q: What is the probability of drawing a queen or a diamond? 

A: We could could up the total number of cards that fit this bill (13 diamonds – one of 

which is a queen – and the other 3 queens = 16  

 possible cards out of 52), or we can just use the formal addition rule: 
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Q: What is the probability of drawing a number card? (Aces included) 

A: Let’s call this event C.  There are 4 of each number 1 to 10, for a total of 40 out of 

52 cards. 

 
13

10

52

40

OutcomesEvent  Simple ofNumber  Total

Occurcan    WaysofNumber 
)( 

C
CP  

 

Q: What is the probability of drawing a number card or a queen? 

A: Now we can use the addition rule for disjoint events, since A and C can’t happen 

at the same time. 
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6. Multiplication Rule: The Basics 
Now that we can find “A or B” probabilities, we focus on how to find “A and B” 

probabilities.  Intuitively, for A and B to happen, we need two things to take place: 

a. A needs to happen 

b. Given that A happened, B needs to happen 

This leads us to… 

 

a. The Formal Multiplication Rule 
 

P(A and B) = P(A)∙P(B|A) 

 



Here, P(B|A) is what is called a conditional probability.  It stands for the probability 

that B happens given A already happened.  (The vertical bar means “given”)  Since 

“A and B” is the same as “B and A”, we can also write the formula as: 

 

P(A and B) = P(B)∙P(A|B) 

 

Which form you use depends on what information is available. 

 

Example: Students can take a standardized test at three test centers A, B, and C.  

Suppose that after the most recent test, 500 students went to A, 200 went to B, and 300 

went to C.  Furthermore, the proportion of students who passed the exam were 50%, 

80%, and 75%, respectively. 

 

Q: What is the probability that a randomly selected student took the test at center B? 

A: There are a total of 1000 students, and 200 went to B.  Thus P(B) = 200/1000 =   

     0.20. 

 

Q: What is the probability that a student who took the test at B passed the exam? 

A: Now, we want to find the probability of passing given that the student took the test  

      at B.  We are told in the problem that 80% of  

 the students at center B passed.  Thus we have: P(Pass | B) = 0.80. 

 

Q: What is the probability that a student both took the test at B and passed? 

A: Using the Multiplication Rule, P(Pass and B) = P(B)P(Pass | B) = (0.20)(0.80) =  

     0.16. 

 

b. Independent Events 
Two events are called independent if the occurrence of one does not affect the chances 

of the other one occurring.  Statistically, what this means is that A and B independent 

 P(A | B) = P(A).  In other words, the probability of A happening given that B 

happened is just the same as if we didn’t know whether B happened (because the 

occurrence of B has no effect on the occurrence of A). 

Note: if A and B are disjoint, then we know that only one can occur.  Thus, knowing 

that B happened tells you that A definitely did not happen, and we have P(A | B) ≠ 

P(A).  Thus disjoint events are never independent events. 

 

c. Multiplication Rule for Independent Events 
Using the fact that P(A | B) = P(A) for independent events, we see that the formal 

multiplication rule turns into: 

 

P(A and B) = P(A)∙P(B) 



 

d. The Law of Total Probability 
This rule is very intuitive, and is useful for finding probabilities of events.  To explain 

it, we refer to the test center example above. 

 

Q: What is the probability of a randomly selected student passing the exam? 

A: From the information above, we can find out (similar to the previous example)  

     that: 

 

 P(A) = 0.50  P(B) = 0.20  P(C) = 0.30 

 P(Pass | A) = 0.50  P(Pass | B) = 0.80  P(Pass | C) = 0.75 

 

 We want to find P(Pass).  What are the possible scenarios where a student passes 

the exam?  They could take the test at A and  

 pass, they could take it at B and pass, or they could take it at C and pass. 

 

 So P(Pass) = P(A and Pass OR B and Pass OR C and Pass).  But each of those 3 

scenarios are disjoint, because a student can’t take  

 the test at more than one center.  Therefore, by the addition rule we can add these 

probabilities as follows: 

 

 P(Pass) = P(A and Pass) + P(B and Pass) + P(C and Pass) 

 

 Then, by the multiplication rule, we can find all of these probabilities: 

 

 P(A and Pass) = P(A)∙P(Pass | A) = (0.50)(0.50) = 0.25 

 P(B and Pass) = 0.16 

 P(C and Pass) = P(C)∙P(Pass | C) = (0.30)(0.75) = 0.225 

 

 Thus P(Pass) = 0.25 + 0.16 + 0.225 = 0.635 

 

In general, if you have disjoint events B1, B2, … , Bn that represent every possible 

outcome of a procedure, then you can write: 

P(A) = P(A and B1) + P(A and B2) + … + P(A and Bn) = 


n

i

i

1

)B andP(A  

The most common way to use this rule is if you have two events A and B, then: 

P(A) = P(A and B) + P(A and Bc) 

 

Examples:  



A telemarketing company makes phone calls to potential customers all across the U.S.  

For each call, the probability of the customer answering the phone is 0.20.  For the next 

couple of questions, assume calls are independent of each other. 

 

Q: Let’s say the company makes 10 phone calls.  What is the probability that all of 

them are answered? 

A: P(10 calls answered) = P(1st call answered AND 2nd call answered AND … AND 

10th call answered) 

 = P(1st call answered)∙P(2nd call answered)∙ … ∙P(10th call answered)  (Mult. Rule 

for Independent Events) 

 = (0.20)∙(0.20)∙ … ∙(0.20) = 0.2010 = 0.0000001024 

 Not very likely, is it? 

 

Q: Let’s say the company makes 2 phone calls.  What is the probability that exactly one 

of them is answered? 

A: First, note that from the Complement Rule, the probability that a call is not answered 

is 1 – 0.20 = 0.80.  Thus: 

 P(1 call answered) = P(1st call answered and 2nd call not answered OR 1st call not 

answered and 2nd call answered) 

  = P(1st call answered and 2nd call not answered) + P(1st call not answered and 

2nd call answered)  (Add. Rule) 

  = P(1st call answered)∙P(2nd call not answered) + P(1st call not answered)∙P(2nd 

call answered)  (Mult. Rule) 

  = (0.20)∙(0.80) + (0.80)∙(0.20) = 0.16 + 0.16 = 0.32 

 

Q: Now suppose that if a customer answers the phone, their chance of buying the product 

is 0.10.  (Note that if they do not answer the  

 phone, their chance of buying it is 0).  What is the overall chance of a telemarketer 

selling the product when they call a home? 

A: In the question, we are told P(Buying | Call Answered) = 0.10 and P(Buying | Not 

Answered) = 0.  We want to find P(Buying). 

 From the Law of Total Probability, 

 P(Buying) = P(Buying and Call Answered) + P(Buying and Not Answered) 

  = P(Call Answered)∙P(Buying | Call Answered) + P(Not Answered)∙P(Buying | Not 

Answered)  (Mult. Rule) 

  = (0.20)∙(0.10) + (0.80)∙(0) = 0.02. 

  

 Note: If this seemed complicated, try just replaced “Buying” with A, “Call Answered” 

with B, and “Not Answered” with Bc.  Then the calculations above follow directly from 

the Law of Total Probability written before. 



 

B. Distribution Function 

 

1. Definition of cumulative distribution function 

 Definition 4.2  

The cumulative distribution function (cdf), or simply distribution function, F of a 

random variable X is defined as 

F(b) = P{X  b}   < b < . 

 Notes: here “ ” means “for all”; b is a real number; and the notation “{X  b}” is 

considered as an event as mentioned before. 

 

Example 4.3  

In a game of tossing a fair coin, let X be a random variable with its value defined as +5 

(winning 5 dollars) if a head (H) appears and as 3 (losing 3 dollars) if a tail (T) appears. 

Derive the cdf F(b) of X and draw a diagram for it. 

Solution: 

 The random variable X takes only two discrete values of 3 and +5. 

 Concept used to derive F(b): enumerate all cases for b. 

 For b F(b) = P{X  b} = P

neither outcome T nor H will “yield” any value of X  

  b < +5, F(b) = P{X  b} = P{T} = 1/2 because only the value of X = 

 b < +5. 

(Note: here, the notation T in P{T} above is considered as an event including just 

an element, namely, the set {T}. Similar interpretations will be applied to 

subsequent discussions.) 

 For +5  b, F(b) = P{X  b} = P{T, H} = 1 because X = 3 and +5 when T and 

 b). 

 A cdf diagram for the random variable X is shown in Fig. 4.1. Note the continuity 

condition at the discrete point of b = 3 or +5. 

 

2. Notes about limit points --- 

 In Fig. 4.1, the hollow circle  at the right end of the middle line segment for F(b) = 

1/2, for example, means the “limit point” 5 , which is the largest real value smaller 

than 5. 

 Formally, the limit point b is defined as lim
n

(b  
1

n
) and may be regarded to be located 

right to the left of the point at b. 



 Similarly, b+ is defined as lim
n

(b + 
1

n
). Such points do not appear in Fig. 4.1. 

 

 

 
 

Fig. 4.1 Cumulative distribution function F(b) for Example 4.3. 

 

 

3. Some properties of the cdf  

The following properties are intuitive in general (can be seen to be true from Fig. 4.1 

above); for proof, see the reference book, or prove them by yourself. 

 

 Property 4.1 --- 

F(a)  F(b) if a < b, i.e., F is a nondecreasing function. 

 Property 4.2 --- 

lim
b

F(b) = 1. 

 Property 4.3 --- 

lim
b

F(b) = 0. 

 Property 4.4 --- 

For any b and any decreasing sequence b1, b2, b3, … which converges to b, it is true 

that lim
n

F(bn) = F(b) (i.e., F is right continuous). 

 

 A note: F(b) with b = 5, for example for Fig. 4.1 above, is just denoted by the solid 

circle  at the left end of the right line segment for F(b) = 1. 

 

4. Some facts 

 All probability questions can be answered in terms of the cdf. Some examples are the 

following facts. 

 Fact 4.1 --- 

P{a < X  b} = F(b F(a). 

3  

 

 

b 

F(b) 



Proof: easy to prove from the definition of the cdf, and the fact {X  b} = {a < X  

b}U{X  a} where {a < X  b} and {X  a} are mutually exclusive. 

 

 Fact 4.2 --- 

P{X < b} = F(b ) 

(note: there is no sign of “=” in X < b). 

Proof: left as an exercise. 

 

 Fact 4.3 --- 

P{X = b} = F(b)  F(b) 

(note: this value is the “jump from b to b ”). 
Proof: left as an exercise. 

 

 Fact 4.4 --- 

P{X > b} = 1  F(b). 

Proof: left as an exercise. 

 

 Note: F(b) = P{X < b}  P{X  b} = F(b). An example can be seen from Fig. 4.1 

where 1/2 = F(5)  F(5) = 1. 

 

Example 4.4  

Given a cdf as follows (as illustrated by Fig. 4.2): 

 F(x) = 0  for x < 0; (A) 

 = x/2 for 0  x < 1; (B) 

 = 2/3 for 1  x < 2; (C) 

 = 11/12 for 2  x < 3; (D) 

 = 1 for 3  x, (E) 

compute the values P{2 < X  4}, P{X < 3}, P{X = 1}, and P{X > 1/2}. 

Solution: 

 P{2 < X  4} = F F(2) (by Fact 4.1) 

   

 P{X < 3} = F(3 ) = 11/12. (by Fact 4.2 and (D) above) 

 P{X = 1} = P{X  1}  P{X < 1} (by Fact 4.3) 

  = F F(1) (by definition and Fact 4.2) 

  = 2/3  1/2 (by (C) and (B) above) 

  = 1/6. 

 P{X P{X  F(1/2) = 3/4. (by Fact 4.4) 



 

 

 
Fig. 4.2 Cumulative distribution function F(x) for Example 4.4 

 

 

 

C. Discrete Random Variable 

 

1. Definitions of discrete random variable and probability mass function --- 

 A random variable which can take only a countable number of possible values is said 

to be discrete. 

 Definition 4.3 --- 

The probability mass function (pmf) p(a) of a discrete random variable X is defined as 

p(a) = P{X = a}. 

 

Example 4.5 --- 

In a game of tossing two coins played by a child with a parent, if two heads appear, 

then the child wins two dollars from the parent; if one head and one tail appear, he/she wins 

one dollar, and if two tails appear, he/she wins nothing. By taking the money the child wins 

from the parent as a random variable X, what is the pmf p(a) of X? 

Solution: 

 Events --- A = {(H, H)}, B = {(H, T), (T, H)}, and C ={(T, T)}. 

 Corresponding random variable values X = 2, 1, 0. 

 Sample space S = {(H, H), (H, T), (T, H), (T, T)}. 

 Corresponding probabilities P(A) = 1/4, P(B) = 1/2, P(C) = 1/4 according to Fact 2.3: 

#
( )

#

points in an event
P E

points in S
 . 

 Therefore, P{X = 2} = 1/4, P{X = 1} = 1/2, and P{X = 0} = 1/4. 

 That is, the pmf p(a) of X are p(2) = 1/4, p(1) = 1/2, p(0) = 1/4. 

 Note: p(2) + p(1) + p(0) = 1 as ensured by Axiom 2. 

x/2

2/3

11/12
1

x/2

2/3

11/12
1



 A graphic diagram for the pmf is shown in Figure 4.3. 

 

 

 
Fig. 4.3 An example of probability mass functions. 

 

 

2. Properties of discrete random variables 

If a discrete random variable X assumes one of the values of x1, x2, ..., then we have the 

following obvious properties: 

 p(xi)  0  for all i = 1, 2, ...; 

 p(x) = 0  for all other values; 

 
1

( )i
i

p x




 = 1. 

Why? According to the definitions of random variable and pmf as well as the three axioms 

of probability. 

 

3. Relation between the pmf and the cdf  

 Fact 4.5 --- 

The cdf F(x) of a discrete random variable X can be expressed in terms of the pmf p(x) 

by 

F(a) = ( )
i

i
all x a

p x


  

Why? Because F(a) = P{X  a} = P{all xi  a} = ( )
i

i
all x a

p x


 . 

 

 The cdf as described above is a step function (like that of Fig. 4.1 but not that of Fig. 

4.2; the latter is not discrete!) 

 

Example 4.6 (Example 4.5 revisited)  

Find the cdf F(a) of the random variable X described in Example 4.5. 

Solution: 

 The pmf p(a) of X are p(2) = 1/4, p(1) = 1/2, p(0) = 1/4. 

 By the above-mentioned pmf-cdf relation, the cdf values F(a) are: 
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0 2 



for a < 0,  F(a) = 0; 

for 0  a < 1, F(a) = p(0) = 1/4; 

for 1 a < 2,  F(a) = p(0) + p(1) = 1/4 + 1/2 = 3/4; 

for 2  a,  F(a) = p(0) + p(1) + p(2) = 1/4 + 1/2 + 1/4 = 1. 

 A graphic diagram of the above cdf F is given in Fig. 4.4. 

 Note the “continuity jump” at a = 0, 1, or 2. 

 

Fig. 4.4 Graphic diagram of the cdf of Example 4.6. 

 

D. Expectation (Mean) 

Example 4.7 --- 

Find the mean  of the random variable X whose values are taken to be the outcomes 

of tossing a fair die. 

Solution: 

 The outcomes are 1 through 6 which are also the values of the random variable X. 

 The mean may be computed as  = (1 + 2 + … + 6)/6 = 21/6 = 7/2 = 3.5. 

 But this means  actually is computed under the assumption that the six faces of the 

die will appear with equal probabilities 1/6. 

 That is,  is computed as a weighted sum of the outcome values with the probability 

values as the weights in the following way: 

 = 1(1/6) + 2(1/6) + … + 6(1/6) = 7/2 = 3.5. 

 

Example 4.8 (Example 4.5 revisited again) --- 

The game of tossing two fair coins by a child as described in Example 4.5 is obviously 

unfair because the child will never lose in each guess (at least, win nothing). If now two 

heads or two tails appear, the child wins two dollars from the parent, and if one head and 

one tail appear, he/she loses one to the parent. How will you judge the game now? Fair or 

not? If not, how will you correct the game further to make it fair? 

Solution: 

 Again, let the money the child wins in each tossing be a random variable X. 

1/4 

3/4 
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 As done in Example 4.5, we can get the following probabilities: 

P{X = +2} = P{(H, H), (T, T)} = 1/4 + 1/4 = 1/2; 

P{X = 1} = P{(H, T), (T, H)} = 1/4 + 1/4 = 1/2. 

(Note: here we use P{(H, H), (T, T)} to represent P(A) with A = {(H, H), (T, T)}, and 

so on, just like using P{H} to represent P(B) with B = {H} as mentioned before.) 

 That is, the pmf is: p(+2) = 1/2 and p(1) = 1/2. 

 To judge whether a game is fair, one way is to compute the average (mean)  of money 

the child wins in each tossing, which, as done in Example 4.7, may be computed as 

 = (+2)P{X = +2} + (1)P{X = 1} 

= (+2)p(+2) + (1)p(1) 

= (+2)(1/2) + (1)(1/2) 

= +1/2. 

 That is, in the long run, the child will win 1/2 dollar from each tossing on the average. 

So, after 100 tossings, for example, he/she wins about (1/2)100 = 50 dollars. The 

game is so still unfair! 

 To make it fair, an obvious way is to lose two dollars, instead of one, to the parent when 

the case of a head and a tail appears; or to win just one dollar instead of two when two 

heads or two tails appear. Then, the average  may be computed to be 0 (check this by 

yourself) which means that the game is fair now. 

 

Definition of the expectation (mean) of a random variable 

 From the above discussions, we may have the following reasonable definition for the 

mean of a random variable. 

 Definition 4.4  

Given a discrete random variable X with pmf p(x), the mean (or expectation, 

expected value) of X, denoted by E[X], is defined as 

E[X] =
: ( ) 0

( )
x p x

xp x


 . 

 Comment: in words, the mean of X is a weighted average of the possible values that X 

can take with the weights being taken to be the probabilities of the values (“average” 

is used as an undefined term in this course). 

 

E. Expectation of a Function of a Random Variable 

1. Functions of random variables 

 Sometimes we need ways to compute more complicated data from those of existing 

random variables. Then functions of random variables may be used. 

 For example, let X and Y be the numbers of red and yellow tokens, respectively, which 

you win in a casino, and they are used as substitutes for 10 and 1 dollars, respectively. 



Then, the dollars you win totally is also a random variable Z which may be expressed 

to be a function g of the two random variables X and Y as Z = g(X, Y) = 10X + Y. 

 

2. How to compute the values of a function of a random variable?  

Given a discrete random variable X and a function g(X) of X, how do we compute 

E[g(X)]? 

(1) First way: by use of the definition of expectation. 

(2) Second way: by use of a proposition derived later. 

 

Example 4.9 (computing function values of random variables by definition) --- 

Let random variable X 

P{X P{X = 0} = 0.5, P{X = 1} = 0.3, and let g(X) = X2. Compute the 

expectation value E[g(X)]. 

Solution: 

 Let Y = g(X) = X2. 

 The pmf p(y) of Y is: 

P{Y = 1} = p(1) = P{X  ( y = x2 = 1  x = 1) 

= P{X = 1} + P{X = +1} (by mutual exclusiveness) 

= 0.2 + 0.3 = 0.5; 

P{Y = 0} = p(0) = P{X = 0} = 0.5. ( y = x2 = 0  x = 0) 

 Therefore, E[X2] = E[Y] = 
: ( ) 0

( )i
y p y

yp y


  = 1(0.5) + 0(0.5) = 0.5. 

 

Proposition  

If random variable X takes the values xi, i  1, with respective probability p(xi), then for 

any real-valued function g,  

E[g(X)] = ( ) ( )i i
i

g x p x . 

Proof: 

 First, divide all the values of g(xi) into groups, each group being with identical values 

of g(xi), denoted as yj. 

 Therefore,  

( ) ( )i i
i

g x p x = 
1: (

1
)

( )
i

i
i g x y

y p x


 + 
2: (

2
)

( )
i

i
i g x y

y p x


 + … 

= y1 
1: ( )

( )
i

i
i g x y

p x


  + y2 
2: ( )

( )
i

i
i g x y

p x


  + … 

= y1P{g(X) = y1} + y2P{g(X) = y2} + … 



 (
: ( )

( )
ji

i
i g x y

p x


  is the sum of probabilities for the event g(X) = yj to occur) 

){ ( }
j

j jg Xy yP   

= E[g(X)]. (by the definition of E[g(X)]) 

 

 

Example 4.10  

Let random variable X P{X 

0.2, P{X = 0} = 0.5, P{X = 1} = 0.3, and let g(X) = X2, computer E[g(X)]. 

Solution: 

 By Proposition 4.1, we have 

E[X2 2p(1) + 02p(0) + 12p(1) 
2(0.2) + 02(0.5) + 12(0.3) 

= 0.5 

which is the same as that computed in Example 4.9! 

 

 

3. Linearity property of the expectation function 

 Corollary 4.1  

If a and b are two constants, then 

E[aX + b] = aE[X] + b. 

Proof: 

E[aX + b] = 
: ( ) 0

( ) ( )
x p x

ax b p x


  (by Proposition 4.1) 

: ( ) 0 : ( ) 0

( ) ( )
x p x i p x

a xp x b p x
 

    

= aE[X] + b.  

(by the definition of expectation and Axiom 2:
: ( ) 0

( )
i p x

p x


  = 1) 

 Note: the notation “i: p(x

discrete values x with non-zero p(x) are dealt with. 

 Comments: 

 The expectation function E[·] may be regarded as a linear operator according to 

the above corollary. 

 E[X] is also called the first moment of X. 

 

4. Definition of the moment function 



 Definition 4.5  

The nth moment of X is defined as 

E[Xn] = 
: ( ) 0

( )n

x p x

x p x


 . 

 The moment function is useful in many engineering application areas. 

 

5. Other interesting averages of numbers --- 

 In daily life, the mean may be used roughly a simple representative value of a group of 

numerical data, showing the “overall magnitude” or the “trend” of the data values. 

Here, in this course it is formally defined as the weighted average of the possible values 

of a random variable. 

 However, the mean sometimes is not a good representation of a data group in certain 

applications. There are “averages of other senses” for various uses. 

 

6. An example of improper use of the mean --- 

Two groups of students took a test and their scores are shown in Table 4.1. How should 

we evaluate their achievements? Which group is better? A common answer is to use the 

means in the following way. 

 The two groups’ mean scores may be computed easily to be 87 and 103, respectively. 

 And so we may say that group B has a better achievement accordingly. 

 However, an inspection of the table data reveals that the larger mean score value of 

Group B is contributed mainly by the large value of 357 of a member in the group; the 

other members as a whole actually are not so good as those of Group A. 

 Then, is there another way of evaluation using a single representative value related to 

the data of each group? 

 An answer is to use the median instead of the mean, as described next. 

 

7. An informal definition of the median 

Simply speaking, the median m of a group of numerical data is the value such that the 

number of data values larger than m is equal to the number of those smaller than m. A 

formal definition of median for random variables will be given later. 

 

8. An example of using the median in replacement of the mean  

For the last example immediate above, we try to use the median in the following way. 

 After sorting the data in Table 4.1 to become Table 4.2, the medians of the two groups 

can be found easily to be 86 and 75, respectively. 

 Therefore, judging from the two median values 86 and 75, we get a conclusion, 

contrary to that mentioned previously, that Group A, instead of B, has a better 

achievement. 



 Translation of the two terms  mean, median:  

 

Table 4.1 Test scores of two groups of students. 

Group A Group B 

86 75 

72 38 

112 357 

113 77 

91 79 

48 42 

87 53 

sum=609 sum=721 

mean=87 mean=103 

 

Table 4.2 Test scores of two groups of students. 

Group A Group B 

72 38 

48 42 

86 53 

median=87 median=75 

113 77 

91 79 

112 357 

sum=609 sum=721 

mean=87 mean=103 

 

 

9. Formal definition of the median of a random variable --- 

 In the last example, a group of data values may be regarded as the outcomes of a random 

variable X and the informal definition of its median m --- “the number of data values 

larger than m is equal to the number of those smaller than m” --- means that the value 

of X is just as likely to be larger than m as it is to be smaller, or equivalently, that the 

probability for X > m and that for X < m are equal, leading to the following formal 

definition for the median. 

 Definition 4.6 --- 

Given a discrete random variable X with cdf F, the median of X is defined as the 

value m such that F(m) = 1/2. 

 Comments: 

 In words, a random variable is just as likely to be larger than its median as it is to 

be smaller. 

 Sometimes, due to the discreteness of the random variable, the exact value of m 



for F(m) = 1/2 to be true is not available, but can only be estimated in such a way 

that F(m) is as close to 1/2 as possible. 

 

Example 4.11 (computing the median for a discrete random variable)  

Find the median m of the random variable X whose values are taken to be the outcomes 

of tossing a fair die. (Note that the mean of this X has been computed to be 3.5 in Example 

4.7.) 

Solution: 

 Obviously, the pmf for X is: p(1) = 1/6, p(2) = 1/6, …, p(6) = 1/6. 

 By the definition of cdf, it is easy to see that the cdf F for X is: F(1) = 1/6, F(2) = 1/6 

+ 1/6 = 1/3, F(3) = 1/6 +1/6 + 1/6 = 1/2, and so on. 

 Therefore, the median of X is 3, which is different from the mean of X already known 

to be 3.5. 

 

10. Two other types of means: geometric and harmonic means  

 The above-mentioned mean of numerical data actually is the so-called arithmetic mean, 

because there are two other types of means, namely, geometric mean and harmonic 

mean which have respective significant applications. 

 

F. Variance 

1. Concept of variance  

 Another property of a random variable other than the mean and median is its variance 

which describes the degree of scatter of the random variable values. The larger the 

variance, the larger the scatter. 

 Conceptually, if the values of the random variable are all the same in the extreme case, 

then the variance of the random variable should be zero. 

 

2. Definition of the variance of a random variable  

 Definition 4.7 --- 

If X is a random variable with mean , then the variance of X, denoted by Var(X), 

is defined by 

Var(X) = E[(X )2]. 

 The variance is computed after a normalization of the random variable values with 

respect to the mean. 

 

3. An alternative formula for computing the variance  

 Proposition 4.2  

The value of Var(X) may be computed alternatively by 



Var(X) = E[X2 E[X])2. 

Proof: 

Var(X) = E[(X  )2] 

= 
x

 (x  )2p(x) (by the definition of mean) 

= 
x

 (x2  2  + 2)p(x) 

= 
x

 x2p(x)  2
x

 xp(x) + 2

x

 p(x) (by Corollary 4.1) 

= E[X2]  2 [X] + 2 

(by the definition of mean and 
x

 p(x) = 1 coming from Axiom 2) 

= E[X2]  2 2 + 2 (by the definition of mean) 

= E[X2]  2. 

 

 Comments: 

 In words, the above proposition says that the variance of a random variable is 

equal to the expected value of X2 minus the square of its expected value. 

 Use of this proposition is often the easiest way to compute Var(X). 

 

Example 4.12  

Compute Var(X) if X represents the outcome of rolling a fair die. 

Solution: 

 By Proposition 4.1, E[X2] = 12(1/6) + 22(1/6) + ... + 62(1/6) = 91/6. 

 Also, we know from the result of Example 4.7 that E[X] = 3.5 = 7/2. 

 By Proposition 4.2, Var(X) = E[X2 E[X])2 2 = 35/12. 

 

Corollary 4.2  

If a and b are constants, then 

Var(aX + b) = a2Var(X). 

Proof: 

By Corollary 4.1, we have E[aX + b] = aE[X] + b =  + b. Accordingly, we have 

Var(aX + b) = E[(aX + b  E[aX + b])2] (by the definition of variance) 

= E[(aX + b    b)2] 

= E[a2(X  )2] 



= a2E[(X  )2] (by Corollary 4.1) 

= a2Var(X). (by the definition of variance) 

 

4. Definition of standard deviation  

 Definition 4.8  

The square root of Var(X), Var( )X , is called the standard deviation of X, and is 

denoted as SD(X), i.e., 

SD(X) = Var( )X . 

 

G. The Bernoulli and Binomial Random Variables 

 

1. Assumptions for the following discussions  

 Given a trial with an outcome of success or failure, define a random variable X to be 

X = 1 if the outcome = a success; and 

X = 0 if the outcome = a failure. 

 And assume the following pmf for random variable X: 

p(0) = P{X  p; and 

p(1) = P{X = 1} = p (4.1) 

where p is the probability of success in a trial. 

 

2. Definitions of Bernoulli and binomial random variables 

 Definition 4.9 --- 

A random variable X is said to be a Bernoulli random variable if its pmf is 

described by (4.1) above for some p such that 0 < p <1. 

 

 Definition 4.10 --- 

If X represents the number of successes in n independent trials with p as the 

p as that of failure in a trial, then X is called a binomial 

random variable with parameters (n, p). 

 

 A comment: a Bernoulli random variable is just a binomial random variable with 

parameters (1, p) 

 

3. The pmf of a binomial random variable  

 Fact 4.6  

The pmf p(i) for a binomial random variable X with parameters (n, p) is: 



p(i) = P{X = i} 

= P{#successes in n trials = i} 

= C(n, i)pi p)n-i,   i =1, 2, ... (4.2) 

Why? Think about it by yourself using a similar reasoning used in Example 3.11. 

 

Example 4.13 (“wheel of fortune”)  

A game called “wheel of fortune” often played in casinos goes like: bet a number N 

within 1 through 6, and then roll 3 dies; if N appears i times, i = 1, 2, 3, then the player win 

i units; otherwise, the player loses one unit. Is this game fair? 

Solution: 

 A trial = a roll of a die here. 

 Success in a trial = N appears in the rolling result. 

 P{N appears in a trial} = 1/6. 

 Let X = units won by the player (“” means “lose”, and “+” means “win”). 

 Let Y = #times that N appears in the 3 rollings. 

 Then, Y is a binomial random variable with parameters (3, 1/6) by definition. 

 p(1) = P{X  

= P{losing one unit} 

= P{N does not appear in the 3 rollings} 

= P{Y = 0} 

= C(3, 0)(1/6)0(5/6)3 (by Fact 4.6) 

= 125/216. 

 p(+1) = P{X = +1}  

= P{winning one unit} 

= P{N appears once in the 3 rollings} 

= P{Y = 1} 

= C(3, 1)(1/6)1(5/6)2 (by Fact 4.6) 

= 75/216. 

 Similarly, 

p(+2) = P{X = +2}  

= P{Y = 2} 

= C(3, 2)(1/6)2(5/6)1 (by Fact 4.6) 

= 15/216. 

 p(+3) = P{X = +3}  

= P{Y = 3} 

= C(3, 3)(1/6)3(5/6)0 (by Fact 4.6) 

= 1/216. 

 To determine if the game is fair, we may compute E[X] (as we did in Example 4.8) to 

see if its value is zero: 



E[X] = 
: ( ) 0

( )i
x p x

xp x


  (by the definition of mean) 

= 
: ( ) 0

{ }i
x p x

xP X x


  (by the definition of pmf) 

= (125/216) + 1(75/216) + 2(15/216) + 3(1/216) 

 

 This result means that in the long run, the player loses 17 units per every 216 games, 

 

 So the game is unfair! 

 

4. Properties of binomial random variables 

 Fact 4.7  

If X is a binomial random variable with parameter (n, p), then  

E[X] = np; 

Var(X) = np p). 

 

Proof: see the reference book. 

If we run n trials, where the probability of success for each single trial is p, what is the 

probability of exactly k successes? 

 

1

1

p
    

2

p
   

3

p
   

1

4

p
   

5

p
  …….   

n
 

 

k slots where prob. success is p , n-k slots where prob. failure is  1 p  

Thus, the probability of obtaining a specific configuration as denoted above is pk(1-p)n-k. 

From here, we must ask ourselves, how many configurations lead to exactly k successes. 

The answer to this question is simply, "the number of ways to choose k slots out of the n 

slots above. This is 








k

n
. Thus, we must add pk(1-p)n-k with itself exactly 









k

n
 times. 

This leads to the following answer to the given question: 

 

                                      (1 )k n k
n

p p
k

 
 

 
                                                                

 

We can also define a discrete random variable based on a binomial distribution. We can 

simply allow the variable to equal the number of successes of running a binomial trial n 

times. We then separately calculate the probability of obtaining 0 successes, 1 success, etc. 

, n successes. Here is a concrete example with n = 3 and p = 1/3: 



 

X = 0, with probability 
27

8
)

3

2
()

3

1
(

0

3
30 








 

X = 1, with probability 
27

12
)

3

2
()

3

1
(

1

3
21 








 

X = 2, with probability 
27

6
)

3

2
()

3

1
(

2

3
12 








 

X = 3, with probability 
27

1
)

3

2
()

3

1
(

3

3
03 








 

 

We can calculate that E(X) = 1)
27

1
(3)

27

6
(2)

27

12
(1  . 

 

Why can we leave at the term when X = 0? Also, why is this value in tune with our intuitive 

idea of what we should expect? We can formally prove this intuitive notion, namely that 

for a binomial distribution X, E(X) = np.  

 

H. The Poisson Random Variable 

 

1. Definition of Poisson random variables  

 Definition 4.11  

A random variable X taking on one of the values 0, 1, 2, ..., is said to be a Poisson 

random variable with parameter  if for some > 0, its pmf is of the following form: 

p(i) = P{X = i} = λ λ

!

i

e
i

       i = 0, 1, 2, ...  (4.3) 

(Note: Poisson is pronounced as /pwason/.) 

 

 A comment: 

The Poisson random variable has a lot of applications because it may be used as an 

approximation of the binomial random variable with parameters (n, p) when n is large 

and p is small enough so that np is a moderate value. See the following fact. 

 

2. Approximation of binomial random variables with Poisson random variables  

 Fact 4.8  

When  = np is moderate, we have 

P{X = i}  λ λ

!

i

e
i

    i =1, 2, ..., n 

where X is a binomial random variable with parameters (n, p). 



(Note: “” means “approximately equals.”) 

Proof: see the reference book. 

 The meaning of approximation indicated by Fact 4.8 above --- 

If n independent trials are performed with each resulting in a success with 

probability p and a failure with probability 1  p, then when n is large and p small 

enough to make np moderate, the number of successes occurring is approximately a 

Poisson random variable with parameter = np. 

 

 Applications of the Poisson random variable --- 

There are a lot of the Poisson random variables: 

 No. of misprints on a page of a book. 

 No. of people in a community living to the age of 100. 

 No. of wrong telephone numbers that are dialed in a day. 

 .... 

(Note: the abbreviation “No.” means “the number of,” and is equivalent to “#” which 

we have used before.) 

 

Why? Because the above numbers of various objects or peoples are all binomial 

random variables which may be approximated by the Poisson random variable. 

 

Example 4.14  

Suppose that the probability that an item produced by a certain machine will be 

defective is 0.1. Find the probability that a sample of 10 items will contain at most 1 

defective item. 

Solution: 

 According to the binomial random variable, the desired probability for 0 or 1 defective 

item is 

P{X  1} = P{X = 0} + P{X = 1} 

= C(10, 0)(0.1)0(0.9)10 + C(10, 1)(0.1)1(0.9)9 

= 0.7361. 

 Poisson approximation using P{X = i}  λ λ

!

i

e
i

  with = np = 100.1 = 1 is 

P{X  1} = P{X = 0} + P{X = 1} = 
0

1 1

0!
e  + 

1
1 1

1!
e  = 2e  = 0.7358 

which is close to 0.7361 computed above! 

 

3. The mean and variance of a Poisson random variable  



 Fact 4.9  

If X is a Poisson random variable with parameter , then 

E[X] =  

Var(X) = . 

Proof: see the reference book.  

 

 

 

 

 

 

CHAPTER 5 

PROBABILITY DISTRIBUTIONS 2 

(CONTINUOUS RANDOM VARIABLES) 

 
A. Introduction 

Recall – A random variable x is called continuous if the possible values of x are all real 

values in some interval. 

To describe the probability distribution of a continuous random variable we use a 

probability density function ( )p x . 

 

Calculating Probabilities Using the Probability Density Function   
   

 If x is a continuous random variable, then the probability that the value of x will  fall 

between the values a and b is given by the area of the region lying below the  graph of ( )p x

and above the x-axis between a and b. 

 

Note:  For any probability density function: 

 

 ( ) 0p x  for all x 

 The total area under the graph of ( )p x  must be 1. 

 
Example:  The Continuous Uniform Distribution. 

 

If the random variable x is limited to having values between 0 and 1, then the function 

( ) 1p x   is a possible probability density function for x.  From the graph of ( )p x shown on 

the next slide, we se that the area below ( )p x between 0x   and 1x   is equal to 1 since the 

area is simply a 1 1 square. 
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Observe that the probability that x lies between .3 and .7 can also be calculated from the 

graph.  The area below ( )p x between .3 and .7 forms a rectangle of width .4 and height 1, so 

the area is .4 1 .4  and so this is the probability that x will assume such a value. 

 

Exercises:  
 

 Find (.15 .75)P x   

 Find 
1 2

4 3
P x
 

  
 

 

 

Example: A triangle distribution.   

 

If x is a random variable whose values lie between 0 and 2, then the function ( )
2

x
p x   is a 

possible probability density function for x.  Observe that the area under the graph of ( )p x  is 

a triangle of base 2 and height 1, so the area is 
1

2 1 1
2

A     . 

 
 

Exercises: 

  

 Find ( 1)P x   

 Find ( 1.5)P x   

 Find (.5 1.5)P x   

 

 

B. Normal Distributions 
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The most commonly used continuous random variables in statistics are normal random 

variables.   A continuous random variable x is normally distributed if the possible values of x 

are all real numbers and if the probability density function for x is given by:    
2 2( ) / 2

( )
2

x

e
p x

 

 

 

  

Where the constants   and  are the desired mean and standard deviation of x. 

The graph of the function above is a symmetric bell-shaped distribution.  Many quantities 

measured in everyday life have a distribution which closely matches that of a normal random 

variable. 

Example:  Suppose a woman is chosen at random from the population of Indonesian women 

19-29 years old. If the random variable h represents the height of the woman in inches, then h 

is approximately normally distributed with a mean of 63.5   and a standard deviation of 

2.75  inches.  The graph of this distribution is as shown below. 

 

 
 

 

Example:  SAT Physics Scores.  Suppose a taker of the 2000 SAT Mathematics Exam is 

chosen randomly.  If the random variable s represents the taker’s score on the exam, then s is 

approximately normally distributed with a mean of 514   and a standard deviation of 

113  .  The graph of this distribution is as shown below. 
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Note: The inflection points of these graphs lie exactly one standard deviation from the mean. 

 
C. The Standard Normal Distribution 

 

To find probabilities for a normally distributed random variable, we need to be able to 

calculate the areas under the graph of the normal distribution.   

 

The table in the front of your book gives the area calculations for a special normal 

distribution, the Standard Normal Distribution which has a mean of 0  and a standard 

deviation of 1  .  The graph of this distribution appears below. 

 

 
 

Note: The table gives the area under the curve to the left of the value z.  Other types of areas can 

be found by combining several of the areas as shown in the next example. 

 

 

 

D. Calculating Probabilities Using the Standard Normal Table 
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To find the area under the standard normal curve to the left of a given value of z, we look up 

the ones and tenths values of z in the column at the right and the hundredths value in the row 

at the top of the table.  The area (probability) is then the value in the table at that column and 

row. 

 

Example: If z is a continuous random variable with the standard normal distribution, then by 

using the Standard Normal Table we can see that: 

 

( .47) .3192P z     and ( 1.28) .8997P z    

 

( .47) 1 .3192 .6808P z       and  ( 1.28) 1 .8997 .1003P z      

 

( .47 1.28) .8997 .3192 .5805P z       

Exercises:  Compute the following probabilities for a random variable z with the standard 

normal distribution. 

 

 ( 0.88)P z   

 ( 1.96)P z    

 ( .32 1.10)P z    

 ( 1.22 or 1.22)P z z    

 

 
E. Calculating Probabilities for a Normal Random Variable 

 

If x is a normally distributed random variable with mean   and standard deviation  , then 

the z-scores of the values for the random variable have the standard normal distribution.  

That is the random variable z defined by: 

x
z






  

is normally distributed with 0   and 1  . 

 

Therefore, any interval for the variable x can be written as an interval for the z-score z and 

then the probability found by using the Standard Normal Table.  

 

 

Example: The height h (in inches) of a randomly selected woman is approximately normally 

distributed with a mean of 63.5   and a standard deviation of 2.75   inches.  To 



calculate the probability that a woman is less than 63 inches tall, we first find the z-score for 

63 inches: 

63 63.5 0.5
0.18

2.75 2.75
z

 
     

 

Thus ( 63) ( 0.18)P h P z    . 

 

Using the Standard Normal Table, we see that ( 0.18) .4286P z    .  So the probability 

that a randomly chosen woman’s height is less than 63 inches is also .4286 or equivalently, 

42.86% of women are less than 63 inches tall. 

 

Exercises:  Using the information from the women’s height example above, Calculate: 

 

 ( 65)P h   

 (60 70)P h   

 (63.5 72)P h   

 

 

 
F. Calculating Values Using the Standard Normal Table 

 

The Standard Normal Table can be used to find percentiles for variables which are normally 

distributed. 

  

Example: To find the score which marks the 80th percentile for SAT Math Scores, we use the 

fact that SAT Math scores s are approximately normally distributed with 514   and  

113  .  From the Standard Normal Table, the z-score for which closest to 80 percent of 

values lie to the left is 0.84 which corresponds to a probability of .7995.   The SAT score which 

corresponds to a z-score of 0.84 can be found by solving 
514

0.84
113

s 
  for s.  This yields 

608.92s  .  So a score of 609 is better than 80% of all other test scores. 

 

Exercises:  For the normal distribution above: 

 

 Find 35P . 

 

 If a person scores in the top 5% of test scores, what is the minimum score they could have 

received? 

 



 If a person scores in the bottom 10% of test scores, what is the maximum score they could 

have received? 

 

G. The Central Limit Theorem 

 

The Central Limit Theorem shows why normal distributions are so common and so useful.  

Essentially, it says that if a large sample is drawn, the sample averages for any random variable 

have a normal distribution.  More specifically: 

 

Central Limit Theorem – If the following conditions are true: 

 

 x is a random variable with a known mean   and known standard deviation   

 

 A random sample of n values of the random variable x is drawn   

 

 Either x is normally distributed or 30n   

 

Then for the random variable x  which represents the sample mean for our sample of n 

values, the following are also true: 

 The distribution of x is approximately normal with greater values of n giving a closer 

approximation. 

 

 The mean of x denoted by x is equal to the mean of x: x   

 

 The standard deviation of x denoted by x  is equal to the standard deviation of x 

divided by the square root of the sample size: x n   

 

Example: If the random variable h represents the height of a randomly selected woman, then 

h is normally distributed with a mean of 63.5   inches and a standard deviation of 

2.75  inches.  If random samples of 16 women are selected, then the Central Limit 

Theorem can be applied. 

 

The sample mean h  is a normally distributed random variable with 63.5
h

  and 

 2.75 16 0.6875
h

    

 

We can now calculate the probability of selecting a sample of 16 women whose average 

height is more than 65 inches. 



We are interested in .  Converting 65 to a  

z-score we have: 

65 63.5 1.5
2.18

0.6875 0.6875

h

h

h
z





 
     

 

The probability in the Standard Normal Table for this value is .9854.  Thus

.  So there is only a 1.43% chance that we would choose 16 

women at random with an average height of at least 65”. 

 

Note that  was calculated in one of the exercises above.  It is far more 

likely to find a single woman who is taller than 65” than a group of 16 women whose average 

height is more than 65”.  

 

Exercises:   

 Find ( 64.5)P h   

 Find (63 64.5)P h   

 

Example: If w represents the weight of an American man chosen at random, then w is a 

continuous random variable with a right-skewed distribution with a mean of  lbs. and 

a standard deviation of  lbs.  If a random sample of 43 men is selected, and w  is the 

average weight of the 43 men, find the following probabilities: 

 

 Find (175 185)P w   

 Find (170 190)P w   

 Find ( 162)P w   

 

 

Example:  Consider the lottery example introduced in Chapter 4 Notes.  An instant lottery 

ticket is purchased for $2.  The possible prizes are $0, $2, $20, $200, and $1000.  Let Z be 

the random variable representing the amount won on the ticket, and suppose Z has the 

following distribution: 

   

Z 0 2 20 200 1000 

( )P Z  .7489 .2 .05 .001 .0001 

 

We determined the mean of Z to be $1.70  , and the standard deviation of Z to be 

$12.57  . 

( 65)P h 

( 65) 1 .9857 .0143P h    

( 65) .2912P h  

180 

20 



 

If a player purchases 1000 random tickets, then we apply the Central Limit Theorem to Z the 

average amount won per ticket.  $1.70
Z

   and 12.57 1000 $0.3975
Z

   . 

 

We can now determine the probability that the player gains money.  In order for the player to 

win money on the 1000 tickets, Z  must exceed $2.  To find ( 2)P Z   we calculate the z-

score for 2Z  : 

2 1.7 .3
.75

.3975 .3975

Z

Z

Z
z





 
     

The standard normal table gives a value of .7734 for the  

z-score .75, and so: ( 2) 1 .7734 .2266P Z     . 

 

Exercise:  Repeat the above with 10,000 tickets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

POINT ESTIMATION OF PARAMETERS 

 

A. Introduction 

Last week you became familiar with the normal distribution. We now estimate the 

parameters of a normally distributed population by analysing a sample taken from it. In this 

lecture we will be concentrating on the estimation of percentages and means of populations 

but do note that any population parameter can be estimated from a sample.  

 

1. Sampling 

Sampling theory takes a whole lecture on its own! Since any result produced from the 

sample can be used to estimate the corresponding result for the population it is absolutely 

essential that the sample taken is as representative as possible of that population.  Common 



sense rightly suggests that the larger the sample the more representative it is likely to be but 

also the more expensive it is to take and analyse. A random sample is ideal for statistical 

analysis but, for various reasons, other methods also have been devised for when this ideal 

is not feasible. We will not study sampling in this lecture but just give a list of the main 

methods below.  

 Simple Random Sampling  

 Systematic Sampling  

 Stratified Random Sampling  

 Multistage Sampling 

 Cluster Sampling 

 Quota Sampling  

It is usually neither possible nor practical to examine every member of a population so 

we use the data from a sample, taken from the same population, to estimate the 'something' 

we need to know about the population itself. The sample will not provide us with the exact 

'truth' but it is the best we can do. We also use our knowledge of samples to estimate limits 

within which we can expect the 'truth' about the population to lie and state how confident 

we are about this estimation. In other words instead of claiming that the mean cost of buying 

a small house is, say, exactly £75 000 we say that it lies between £70 000 and £80 000. 

 

2. Types of Parameter estimates 

These two types of estimate of a population parameter are referred to as: 

 Point estimate     - one particular value; 

 Interval estimate - an interval centred on the point estimate. 

 

3. Point Estimates of Population Parameters 

From the sample, a value is calculated which serves as a point estimate for the 

population parameter of interest. 

a. The best estimate of the population percentage,  , is the sample percentage, p. 

b. The best estimate of the unknown population mean,  , is the sample mean, 
n

x
x


     

This estimate of  is often written ̂  and referred to as 'mu hat'. 



c. The best estimate of the unknown population standard deviation,  , is the sample 

standard deviation s, where:   

 
 1n

xx
s

2



 
      This is obtained from the xn-1 key on the calculator. 

N.B. 
 
 n

xx
s

2 
    from xn is not used as it underestimates the value of   

4. Interval Estimate of Population Parameter  (Confidence interval) 

Sometimes it is more useful to quote two limits between which the parameter is expected 

to lie, together with the probability of it lying in that range. The limits are called the 

confidence limits and the interval between them the confidence interval. 

The width of the confidence interval depends on three sensible factors: 

 a.  the degree of confidence we wish to have in it, 

      i.e. the probability of it including the 'truth', e.g. 95%; 

 b.  the size of the sample, n;    

c.  the amount of variation among the members of the sample, e.g. for means this the  

standard deviation, s. 

 

The confidence interval is therefore an interval centred on the point estimate, in this 

case either a percentage or a mean, within which we expect the population parameter to lie.   

The width of the interval is dependent on the confidence we need to have that it does in fact 

include the population parameter, the size of the sample, n, and its standard deviation, s, if 

estimating means. These last two parameters are used to calculate the standard error, s/n, 

which is also referred to as the standard deviation of the mean.   

 

The number of standard errors included in the interval is found from statistical tables - 

either the normal or the t-table. Always use the normal tables for percentages which need 

large samples. For means the choice of table depends on the sample size and the population 

standard deviation: 

 

 Population standard deviation 



Sample size Known: standard error = 

n


 

Unknown: standard error = 
n

s
 

Large Normal tables Normal tables 

Small Normal tables t-tables 

 

5. Interpretation of Confidence intervals 

How do we interpret a confidence interval? If 100 similar samples were taken and 

analysed then, for a 95% confidence interval, we are confident that 95 of the intervals 

calculated would include the true population mean. In practice we tend to say that we are 

95% confident that our interval includes the true population value. Note that there is only 

one true value for the population mean, it is the variation between samples which gives the 

range of confidence intervals. 

6. Confidence Intervals for a Percentage or Proportion 

The only difference between calculating the interval for percentages or for proportions 

is that the former total 100 and the latter total 1. This difference is reflected in the formulae 

used, otherwise the methods are identical. Percentages are probably the more commonly 

calculated so in Example 2 we will estimate a population percentage. 

The confidence interval for a population percentage or a proportion, ,  is given by: 

         
 

n

p100p
zp


  for a percentage  or  

 
n

p1p
zp


   

for a proportion 

where:  is the unknown population percentage or proportion being estimated, 

p is the sample percentage or proportion, i.e. the point estimate for , 

z is the appropriate value from the normal tables, 

n is the sample size. 

 

The formulae 
 

n

p100p 
  and  

 
n

p1p 
 represent the standard errors of a percentage 

and a proportion respectively.  

The samples must be large, ( >30), so that the normal table may be used in the formula. 



We therefore estimate the confidence limits as being at z standard errors either side of the 

sample percentage or proportion. The value of z, from the normal table, depends upon the 

degree of confidence, e.g. 95%, required. We are prepared to be incorrect in our estimate 

5% of the time and confidence intervals are always symmetrical so, in the tables we look 

for Q to be 5%, two tails. 

 

Example 2 

In order to investigate shopping preferences at a supermarket a random sample of 175 

shoppers were asked whether they preferred the bread baked in-store or that from the large 

national bakeries. 112 of those questioned stated that they preferred the bread baked in-

store. Find the 95% confidence interval for the percentage of all the store's customers who 

are likely to prefer in-store baked bread. 

The point estimate for the population percentage,, is p = 100
175

112
  = 64% 

Use the formula: 
 

n

p100p
zp


   where p = 64 and n = 175 

From the short normal table   95% confidence  5%, two tails   z = 1.96 

 

 
n

p100p
zp


    




175

3664
96.164  

the confidence limits for the population percentage, , are and                                                         < 

 <  

 

5. Confidence interval for the Population Mean, , when the population standard 

deviation, , is known. 

 

Example 3:  For the small supermarket as a whole it is known that the standard deviation 

of  the wages for part-time employees is £1.50.  

A random sample of 10 employees from the small supermarket gave a mean wage of £4.15 

per hour. Assuming the same standard deviation, calculate the 95% confidence interval for 

the average hourly wage for employees of the small branch and use it to see whether the 



figure could be the same as for the whole chain of supermarkets which has a mean value 

of £4.50. 

 As we actually know the population standard deviation  we do not need to estimate it from 

the sample standard deviation. The normal table can therefore be used to find the number 

of standard errors in the interval. 

Confidence Interval:  
n

zx


   where z comes from the short normal table  

 



10

50.1
96.115.4

n
zx  

This interval includes the mean, £4.50, for the whole chain so the average hourly wage could 

be the same for all employees of the small supermarket. 

 

6. Confidence interval for the Population Mean, , when the population standard 

deviation is not known, so needs estimating from the sample standard deviation, s. 

 

The population standard deviation is unknown, so the t-table, must be used to compensate 

for the probable error in estimating its value from the sample standard deviation. 

Example 4:  Find the 99% confidence interval for the mean value of all the invoices, in 

Example 1, sent out by the small supermarket branch. If the average invoice value for the 

whole chain is £38.50, is the small supermarket in line with the rest of the branches? 

Confidence Interval: 
n

s
tx    where the value of t comes from the table of 

'percentage points of the t-distribution' using n - 1 degrees of freedom  ( = n - 1)  

From Example 1   x s n  £32. , £7. , .92 12 20    degrees of freedom = (20 – 1) = 19;    

99% confidence;  from tables t  =  2.87 

n

s
tx    = 

This interval does not include £38.50, so the small branch is out of line with the rest. 

 

7. Comparison of Means using 'Overlap' in Confidence Intervals 



We are going to extend the previous method to see if two populations could have the same 

mean or, alternatively, if two samples could have come from the same population as judged 

by their means. We assume that the standard deviations of both populations are the same.  

If, for example, a supermarket chain wished to see if a local advertising campaign was 

successful or not they could take a sample of customer invoices before the campaign and 

another after the campaign and calculate confidence intervals for the mean spending of all 

customers at both times. If the intervals were found to overlap the means could be the same 

so the campaign might have had no effect. If, on the other hand, they were quite separate 

with the later sample giving the higher interval then the campaign must have been effective 

in increasing sales. 

 

Example 5 

The till slips of supermarket customers were sampled both before and after an advertising 

campaign and the results were analysed with the following results: 

 

Before:  x  = £37.60,  s = £6.70,  n = 25 

After:   x  = £41.78,  s = £5.30,  n = 25 

 

Has the advertising campaign been successful in increasing the mean spending of all  

the supermarket customers? Calculate two 95% confidence intervals and compare the 

results. 

 

For both, n = 25 so 24 degrees of freedom giving t = 2.06 for 5%, 2-tails. 

 

Before:     76.260.37
25

70.6
06.260.37

n

s
tx

B

B
BB   

   £34.84 <  < £40.36 

 

After:        
A

A
AA

n

s
tx  

 



    

Interpretation:  The sample mean had risen considerably but, because the confidence 

intervals overlap, the mean values for all the sales may lie in the common ground.  There 

may be no difference between the two means so the advertising campaign has  

not been proved to be successful.  

 

We shall improve on this method in the next example. 

8. Confidence Intervals for Paired Data 

If two measures are taken from each case, i.e. 'before' and 'after', in every instance then the 

'change' or 'difference' for each case can be calculated and a confidence interval for the 

mean of the 'changes' calculated. If the data can be 'paired', i.e. it is not independent, then 

this method should be used as a smaller interval is produced for the same percentage confi-

dence giving a more precise estimate. 

Confidence Interval:  

sdifferencecalculatedthetorefernands,x
n

s
tx ddd

d

d
dd  . 

Example 6  

The supermarket statistician realised that there was a considerable range in the spending 

power of its customers. Even though the overall spending seemed to have increased the 

high spenders still spent more than the low spenders and that the individual increases would 

show a smaller spread. In other words these two populations, 'before' and 'after', are not 

independent. 

Before the next advertising campaign at the supermarket, he took a random sample of 10 

customers, A to J, and collected their till slips. After the campaign, slips from the same 10 

customers were collected and both sets of data recorded. Using the paired data, has there 

been any mean change at a 95% confidence level? 

 

 A B C D E F G H I J 

Before 42.3

0 

55.7

6 

32.2

9 

10.2

3 

15.7

9 

46.5

0 

32.3

0 

78.6

5 

32.2

0 

15.9

0 



After 43.0

9 

59.2

0 

31.7

6 

20.7

8 

19.5

0 

50.6

7 

37.3

2 

77.8

0 

37.3

9 

17.2

4 

 

We first need to calculate the differences.  The direction doesn't matter but it seems sensible 

to take the earlier amounts away from the later ones to find the changes: 

 A B C D E F G H I J 

Diffs. 0.79 3.44 -

0.53 

10.5

5 

3.71 4.17 5.02 -

0.85 

5.19 1.34 

We can now forget the original two data sets and just work with the differences.  

 

From the differences 10nand37.3£s,28.3£x ddd   

95% C.I. 41.228.3
10

37.3
26.228.3

n

s
tx

d

d
dd   

    £0.87 < d < £5.69 

 

This interval does not include zero so the possibility of 'no change' has been eliminated. 

Because the mean amount spent after the campaign is greater than that before it, there has been 

a significant increase in spending. 

In general:  If the confidence interval includes zero, i.e. it changes from negative to positive, 

then there is a possibility that no change has taken place and the original situation has remained 

unchanged. If both limits have the same sign, as above, then zero is excluded and some change 

must have taken place.   

When interpreting this change look carefully at the direction of the change as this will depend 

on your order of subtraction. In the above case it is obvious that dx is positive so there has been 

an increase in the average spending. 

 

B. Properties of Point Estimators and Methods of Estimation 

 

An estimator ̂  for a target parameter   is a function of the random variables and therefore 

it is itself a random variable.  

Consequently an estimator has a probability distribution which we call the sampling 

distribution of the estimator.  



We noted before that if  ˆE   , the estimator is unbiased. 

1. Relative Efficiency 

We know that usually it is possible to obtain more than one unbiased estimator for the same 

target parameter. If we have two unbiased estimators we prefer the one with the smaller 

variance. 

 

The definition of the relative efficiency: 

 
 
 

1

1 2

1 2

ˆ
ˆ ˆ,

ˆ ˆ

V
eff


 

 


 

How do you interpret it? 

 

2. Consistency 

Suppose that a coin, which has probability p of resulting in heads, is tossed n times. If p is 

unknown, the sample proportion, Y/n, is an estimator of p.  

What happens to it if n increases? 

Intuitively, as n increases, the  increases, Y/n should get closer to p.  

 

3. Definition 

ˆ
n  is a consistent estimator of   if for any 0   

 

 

ˆlim 1

ˆlim 0

n
n

n
n

P

or

P

  

  





  

  

 

 

Theorem 6.1 

An unbiased estimator ˆ
n  for   is a consistent estimator of   if  

 ˆlim 0n
n

V 


  

Previously we considered 
1 2Y Y  as an intuitive estimator for 

1 2  . The next 

theorem will be useful in establishing the consistency of such estimators. 

 

 

Theorem 6.2 

Suppose that ˆ
n  converges in probability to   and that ˆ 'n  converges in probability to 

' . 

 



a. ˆ ˆ 'n n   converges in probability to '   

b. ˆ ˆ 'n n   converges in probability to '   

c.  ˆ ˆ/ 'n n   converges in probability to / '  , provided that ' 0  . 

d. If g(.) is a real-valued function that is continuous at  , then  ˆ
ng   converges in 

probability to  g  . 

We considered large-sample confidence intervals for some parameters or practical interest. 

In particular, if 
1 2, ,..., nY Y Y  is a random sample form any distribution with mean   

and variance 2 , we established that  

/ 2Y z
n



 
  

 

 

Is a valid large sample confidence interval with confidence coefficient  1   . If 

sample size is large and 
2  is unknown, it is recommended to substitute S for  . The 

following theorem provides the theoretical justification. 

 

Theorem 6.3 

Suppose that 
nU  has a distribution that converges to a standard normal distribution as 

n  . If 
nW  converges in probability to 1, then the distribution function of /n nU W  

converges to a standard normal distribution function. 

 

4. Sufficiency 

 

Up to this point we have chosen estimators on the basis of intuition. We have shown that 

Y  and 2S  are unbiased estimators of   and 2 . Are we loosing any information 

about our target parameters relying on these statistics? 

In this section we present methods for finding statistics, that summarizes all the information 

about target parameters. Such statistics are said to have the property of sufficiency, or they 

are called sufficient statistics. 

“Good” estimators are (or can be made to be) functions of any sufficient statistic. 

To illustrate let us consider the outcomes of n trials of binomial experiment, 

1 2, ,..., nX X X , where  

 

1,    if the th trial is a success

0,    if the th trial is a failure
i

i
X

i


 


 

 

If p is a probability of success on any trial then, for 1,2,...,i n , 



 

1,    with probability p

0,    with probability q=1-p
iX


 


 

 

Suppose we are given  

 

1

n

i

i

Y X



 

 

The number of successes among the n trials. If we know the value of Y, can we gain any 

further information about p by looking at other functions of 
1 2, ,..., nX X X ?  

 

One way to answer this question is to look at the conditional distribution of 

1 2, ,..., nX X X  given Y: 

 

 

 

 

1 1

1 1

,..., |

,..., ,

n n

n n

P X x X x Y y

P X x X x Y y

P Y y

  

  




 

 

The numerator is 0 unless 

1

n

i

i

Y x



, and it is the probability of an independent 

sequence of 0s and 1s with the total sum of y 1s and (n-y) 0s if 

1

n

i

i

Y X



. Also the 

denominator is the binomial probability of exactly y success in n trials. Therefore, if 

1,2,...,y n , 

 

 

 

1 1

1

,..., |

1 1
  if 

1

0                                         otherwise

n n

n yy n

i
n y iy

P X x X x Y y

p p
x y

n n
p p

y y



 

  

 
 

   
    

   





  

It is important to note that the conditional distribution of 
1 2, ,..., nX X X  given Y does 

not depend upon p. That is, once Y is known, no other function of 
1 2, ,..., nX X X  will 

shed additional light on the possible value of p. Therefore statistics Y is said to be sufficient 

for p.  

 

Definition 9.3 



Let 
1 2, ,..., nY Y Y  denote a random sample from a probability distribution with unknown 

parameter  . Then the statistics  is said to be sufficient for   if the conditional 

distribution of 
1 2, ,..., nY Y Y  given U does not depend on  . 

 

This definition tells us how to check whether statistic is sufficient, but it really does not tell 

us how to find a sufficient statistic. We will move towards it in two steps.  

 

First we will define the concept of likelihood. 

Recall that in the discrete case the joint distribution of discrete random variables 

1 2, ,..., nY Y Y  is given by a probability function of  

 1 2, ,..., np y y y .  

If this joint probability depends explicitly on the value of a parameter  , we write it as  

 1 2, ,..., |np y y y  .  

This function gives the probability or likelihood of observing the event 

 1 1 2 2, ,..., n nY y Y y Y y    given parameter  . 

 

In the continuous case we will write the joint density function 

 1 2, ,..., nf y y y . 

It will be convenient to have a single name. 

 

Definition 9.4 

Let 
1 2, ,..., ny y y  be sample observations taken on correspondent random variables 

1 2, ,..., nY Y Y  whose distribution depends on parameter . 

Then, if 
1 2, ,..., nY Y Y  are discrete random variables, the likelihood of the sample, 

 1 2, ,..., |nL y y y   is defined to be the joint probability of 
1 2, ,..., ny y y .  

If 
1 2, ,..., nY Y Y  are continuous random variables,. The likelihood 

 1 2, ,..., |nL y y y   is defined to be the joint density evaluated at 
1 2, ,..., ny y y . 

 

Theorem 9.4 

Let U be a statistic based on the random sample 
1 2, ,..., nY Y Y . Then U is sufficient statistic 

for the estimation of a parameter   if and only if the likelihood  1 2, ,..., |nL y y y   

can be factored into two nonnegative functions 

 

     1 2 1 2, ,..., | , , ,...,n nL y y y g u h y y y    



 

Where  ,g u   is a function only of u and  , and  1 2, ,..., nh y y y  is not a 

function of  . 

 

C. The Rao-Blackwell Theorem 

In words: 

If  

a. ̂  is an unbiased estimator for   

 and  

b. U is a statistic that is sufficient for  ,  

 

then there is a function of U that is  

i) an unbiased estimator for    

ii) which has no larger variance than ̂  

 

Definition 

A sufficient statistic for a parameter  is called a minimal sufficient statistic if it can be 

expressed as a function of any sufficient statistic for  . 

 

How to find it? 

1. Typically factorization criterion 

2. Lehman and Scheffe method: 

Consider the ratio of likelihoods evaluated at two points,  1 2, ,..., nx x x  and 

 1 2, ,..., ny y y : 

 

 
1 2

1 2

, ,..., |

, ,..., |

n

n

L x x x

L y y y





 

Many times it is possible to find a find a function 

  1 2, ,..., ng x x x  

Such that this ratio is free of the unknown parameter   if and only if: 

 1 2, ,..., ng x x x  1 2, ,..., ng y y y  

If such a function can be found, then  1 2, ,..., ng Y Y Y  is a minimal sufficient statistic for 

 . 

MVUE = a minimum variance unbiased estimator 

 

D. The Method of Moments 

i) Sample moments should provide good estimates of the corresponding population moments.  



ii) Because the population moments are functions of population parameters, we can use i) to 

get these parameters 

Formal Definition: 

Choose as estimates those values of the parameters that are solutions of the equations 

' '
k km  , for 1,2,...,k t , where t is the number of parameters to be estimated. 

Example 9.11 

A random sample 
1 2, ,..., nY Y Y  is selected from a population in which 

iY  possesses a 

uniform density function over the interval  0,  where   is unknown. Use the method of 

moments to estimate  . 

Solution 

The value of '
1  for a uniform random variable is 

'
1

2


    

The corresponding first sample moment is 

'
1

1

1 n

i

i

m Y Y
n 

   

From which: 

'
1

2
Y


    

Thus,  

ˆ 2Y   

E.  Method of Maximum Likelihood 

Suppose that the likelihood function depends on k parameters, 
1 2, ,..., k   .  Choose as 

estimates those values of the parameters that maximize the likelihood  

 1 2 1 2, ,..., | , ,...,n kL y y y     

Example 9.14 

Binomial experiment with n trials resulted in observations  1 2, ,..., ny y y , where yi=1 if 

trial is successful and 0 otherwise. Find the maximum likelihood estimator of p, the probability 

of success. 

Solution 

     1 2, ,..., | 1
n yy

nL p L y y y p p p


   , 

where  

1

n

i

i

y y






Now we want to maximize it with respect to p. Since 
 ln L p  

 is a monotonically increasing 

function of  L p , the value of p which maximizes both functions will be the same. 

       ln ln ln 1L p y p n y p      
 

FOC: 
0

1

y n y

p p


 



 

From which 
ˆ

y
y

n


 

Summary 

Moment estimators are consistent but generally not very efficient. 

MLEs are consistent and, if adjusted to be unbiased, often lead to minimum variance 

estimators. 

MLEs – a popular method of estimation 

the density function of X and suppose that U = h(X). Show that U is minimally sufficient for a 

if the following condition holds:  

f(x | a) / f(y | a) does not depend on a if and only if h(x) = h(y).  

 

E. The Factorization Theorem 

The definition precisely captures the intuitive notion of sufficiency given above, but can be 

difficult to apply. We must know in advance a candidate statistic U, and then we must be able 

to compute the conditional distribution of X given U. The factorization theorem given in the 

next exercise frequently allows the identification of a sufficient statistic from the form of the 

density function of X. 

3. Let f(x | a) denote the density function of X. Show that U = h(X) is sufficient for a if and 

only if there exist functions G(u | a) and r(x) such that  

f(x | a) = G[h(x) | a] r(x) for x in S and a in A. 

As the notation indicates, r depends only on the data x and not on the parameter a. 

4. Show that if U and V are equivalent statistics and U is sufficient for a then V is sufficient for 

a. 

5. Suppose that the distribution of X is a k-parameter exponential families with the natural 

statistic h(X). Show that h(X) is sufficient for a. 

Because of this result, h(X) is referred to as the natural sufficient statistic for the exponential 

family. 

6. Suppose that X1, X2, ..., Xn is a random sample of size n from the normal distribution with 

mean µ in R and variance d2 > 0.  

a. Show that (X1 + X2 + ··· + Xn, X1
2 + X2

2 + ··· + Xn
2) is sufficient for (µ, d2), 

b. Show that (M, S2) is sufficient for (µ, d2) where M is the sample mean and S2 is the sample 

variance. Hint: Use part (a) and equivalence. 

7. Suppose that X1, X2, ..., Xn is a random sample of size n from the Poisson distribution with 

parameter a > 0. Show that X1 + X2 + ··· + Xn is sufficient for a where 

http://www.ds.unifi.it/VL/VL_EN/special/special1.html
http://www.ds.unifi.it/VL/VL_EN/special/special2.html
http://www.ds.unifi.it/VL/VL_EN/poisson/poisson4.html


8. Suppose that X1, X2, ..., Xn is a random sample from the gamma distribution with shape 

parameter k > 0 and scale parameter b > 0.  

a. Show that (X1 + X2 + ··· + Xn, X1X2 ··· Xn) is sufficient for (k, b). 

b. Show that (M, U) is sufficient for (k, b) where M is the (arithmetic) sample mean and U is 

the geometric sample mean. Hint: Use part (a) and equivalence. 

9. Suppose that X1, X2, ..., Xn is a random sample from the beta distribution with parameters a 

> 0 and b > 0. Show that (U, V) is sufficient for (a, b) where 

U = X1X2 ··· Xn, V = (1 - X1)(1 - X2) ··· (1 - Xn). 

10. Suppose that X1, X2, ..., Xn is a random sample from the uniform distribution on the interval 

[0, a] where a > 0. Show that X(n) (the n'th order statistic) is sufficient for a. 

12. Show that if U and V are equivalent statistics and U is minimally sufficient for a then V is 

minimally sufficient for a. 

13. Suppose that the distribution of X is a k-parameter exponential family with natural 

sufficient statistic U = h(X). Show that U is a minimally sufficient for a. Hint: Recall that j 

is the smallest integer such that X is a j-parameter exponential family. 

14. Show that the sufficient statistics given above for the Bernoulli, Poisson, normal, gamma, 

and beta families are minimally sufficient for the given parameters. 

15. Suppose that X1, X2, ..., Xn is a random sample from the uniform distribution on the interval 

[a, a + 1] where a > 0. Show that (X(1), X(n)) is minimally sufficient for a. 

In the last exercise, note that we have a single parameter, but the minimally statistics is a vector 

of dimension 2. 
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