
ConcurrencyConcurrency

Eko MarpanajiEko Marpanaji

ObjectivesObjectives
To understand the concept of multithreading and apply it to develop concurrent To understand the concept of multithreading and apply it to develop concurrent
programs (§programs (§24.224.2).).
To develop task classes by implementing the Runnable interface (§To develop task classes by implementing the Runnable interface (§24.324.3).).
To create threads to run tasks using the Thread class (§To create threads to run tasks using the Thread class (§24.324.3).).
To control threads using the methods in the Thread class (§To control threads using the methods in the Thread class (§24.424.4).).
To control animations using threads (§§To control animations using threads (§§24.524.5, , 24.724.7).).
To run code in the event dispatcher thread (§To run code in the event dispatcher thread (§24.624.6).).
To execute tasks in a thread pool (§To execute tasks in a thread pool (§24.824.8).).
To use synchronized methods or blocks to synchronize threads to avoid race To use synchronized methods or blocks to synchronize threads to avoid race
conditions (§conditions (§24.924.9).).
To synchronize threads using locks (§To synchronize threads using locks (§24.1024.10).).
To facilitate thread communications using conditions on locks (§§To facilitate thread communications using conditions on locks (§§24.1124.11––24.1224.12).).
(Optional) To use blocking queues to synchronize access to an array queue, linked (Optional) To use blocking queues to synchronize access to an array queue, linked
queue, and priority queue (§queue, and priority queue (§24.1324.13).).
(Optional) To restrict the number of accesses to a shared resource using semaphores (Optional) To restrict the number of accesses to a shared resource using semaphores
(§(§24.1424.14).).
(Optional) To use the resource-ordering technique to avoid deadlocks (§(Optional) To use the resource-ordering technique to avoid deadlocks (§24.1524.15).).
To understand the life cycle of a thread (§To understand the life cycle of a thread (§24.1624.16).).
To create synchronized collections using the static methods in the Collections class (§To create synchronized collections using the static methods in the Collections class (§
24.1724.17).).
(Optional) To display the completion status of a task using JProgressBar (§(Optional) To display the completion status of a task using JProgressBar (§24.1824.18).).

mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.2. Thread Concepts.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.3. Creating Tasks and Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.3. Creating Tasks and Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.4. The Thread Class.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.5. Example - Flashing Text.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.7. (Optional) Case Study - Clock with Audio.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.6. GUI Event Dispatcher Thread.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.8. Thread Pools.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.9. Thread Synchronization.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.10. (Optional) Synchronization Using Locks.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.11. (Optional) Cooperation Among Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.12. (Optional) Case Study - Producer-Consumer.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.13. (Optional) Blocking Queues.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.14. (Optional) Semaphores.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.15. Avoiding Deadlocks.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.16. Thread States.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.17. Synchronized Collections.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.18. (Optional) JProgressBar.htm

Thread ConceptThread Concept
A A threadthread is the flow of execution of a task in a program (from is the flow of execution of a task in a program (from
beginning to end). beginning to end).
A task is a program unit that is executed independently of other A task is a program unit that is executed independently of other
parts of the program. parts of the program.
A thread provides the mechanism for running a task. With Java, A thread provides the mechanism for running a task. With Java,
you can launch multiple threads from a program concurrently. you can launch multiple threads from a program concurrently.
These threads can be executed simultaneously in multiprocessor These threads can be executed simultaneously in multiprocessor
systems, as shown in systems, as shown in Figure 24.1(a)Figure 24.1(a)..
In single-processor systems, as shown in In single-processor systems, as shown in Figure 24.1(b)Figure 24.1(b), the , the
multiple threads share CPU time, and the operating system is multiple threads share CPU time, and the operating system is
responsible for scheduling and allocating resources to them. This responsible for scheduling and allocating resources to them. This
arrangement is practical because most of the time the CPU is idle. arrangement is practical because most of the time the CPU is idle.
It does nothing, for example, while waiting for the user to enter It does nothing, for example, while waiting for the user to enter
data.data.

Figure 24.1. Figure 24.1.
Running Multiple ThreadRunning Multiple Thread

(a) Multiple CPU (b) Single CPU(a) Multiple CPU (b) Single CPU

Thread Concept (c.)Thread Concept (c.)
Multithreading can make your program more responsive and Multithreading can make your program more responsive and
interactive, as well as enhance performance. For example, a good interactive, as well as enhance performance. For example, a good
word processor (word processor (misalnya MS Wordmisalnya MS Word) lets you print or save a file) lets you print or save a file
while you are typing. In some cases, multithreaded programs run while you are typing. In some cases, multithreaded programs run
faster than single-threaded programs even on single-processor faster than single-threaded programs even on single-processor
systems. Java provides exceptionally good support for creating systems. Java provides exceptionally good support for creating
and running threads and for locking resources to prevent conflicts.and running threads and for locking resources to prevent conflicts.
When your program executes as an application, the Java When your program executes as an application, the Java
interpreter starts a thread for the main method. When your interpreter starts a thread for the main method. When your
program executes as an applet, the Web browser starts a thread program executes as an applet, the Web browser starts a thread
to run the applet. to run the applet.
You can create additional threads to run concurrent tasks in the You can create additional threads to run concurrent tasks in the
program. In Java, each program. In Java, each task is an instance of the Runnable task is an instance of the Runnable
interface, also called a runnable object.interface, also called a runnable object. A thread is essentially A thread is essentially
an object that facilitates the execution of a task.an object that facilitates the execution of a task.

Creating Task and ThreadCreating Task and Thread

Creating TaskCreating Task
Tasks are objects. Tasks are objects.
To create tasks, you have to first declare a class To create tasks, you have to first declare a class
for tasks. for tasks.
A task class must implement the Runnable A task class must implement the Runnable
interface. The Runnable interface is rather simple. interface. The Runnable interface is rather simple.
All it contains is the run method. You need to All it contains is the run method. You need to
implement this method to tell the system how your implement this method to tell the system how your
thread is going to run. thread is going to run.
A template for developing a task class is shown in A template for developing a task class is shown in
Figure 24.2(a)Figure 24.2(a)..

Figure 24.2. Define a Task Figure 24.2. Define a Task

Once you have declared a TaskClass, you can create a task using Once you have declared a TaskClass, you can create a task using
its constructor. For example,its constructor. For example,

TaskClass task = new TaskClass(...);TaskClass task = new TaskClass(...);
A task must be executed in a thread. The Thread class contains A task must be executed in a thread. The Thread class contains
the constructors for creating threads and many useful methods for the constructors for creating threads and many useful methods for
controlling threads. To create a thread for a task, usecontrolling threads. To create a thread for a task, use

Thread thread = new Thread(task);Thread thread = new Thread(task);
You can then invoke the You can then invoke the start()start() method to tell the JVM that the method to tell the JVM that the
thread is ready to run, as follows:thread is ready to run, as follows:

thread.start(); thread.start();
The JVM will execute the task by invoking the task's The JVM will execute the task by invoking the task's run()run()
method. method. Figure 24.2(b)Figure 24.2(b) outlines the major steps for creating a task, outlines the major steps for creating a task,
a thread, and start the thread.a thread, and start the thread.

Creating Task and Thread ExampleCreating Task and Thread Example

Listing 24.1. A program that creates three Listing 24.1. A program that creates three
tasks and three threads to run them:tasks and three threads to run them:
The first task prints the letter a one The first task prints the letter a one
hundred times.hundred times.
The second task prints the letter b one The second task prints the letter b one
hundred times.hundred times.
The third task prints the integers 1 The third task prints the integers 1
through 100.through 100.

Contoh Hasil Eksekusi Contoh Hasil Eksekusi
TaskThreadDemo.javaTaskThreadDemo.java

Importance to note:Importance to note:

Task adalah Task adalah runable objectrunable object, sehingga deklarasi , sehingga deklarasi
kelas untuk task harus kelas untuk task harus implements Runnableimplements Runnable..
Thread digunakan untuk menjalankan setiap taskThread digunakan untuk menjalankan setiap task
run()run() adalah method standar yang digunakan adalah method standar yang digunakan
oleh Thread untuk menjalankan Taskoleh Thread untuk menjalankan Task
start()start() adalah method standar untuk adalah method standar untuk
menjalankan Threadmenjalankan Thread

