Concurrency

Eko Marpanaiji

Objectives

B To understand the concept of multithreading and apply it to develop concurrent
programs (§24.2).

ll To develop task classes by implementing the Runnable interface (§24.3).
#l To create threads to run tasks using the Thread class (§24.3).

To control threads using the methods in the Thread class (§24.4).

To control animations using threads (§§24.5, 24.7).

To run code in the event dispatcher thread (§24.6).

B To execute tasks in a thread pool (§24.8).

#l To use synchronized methods or blocks to synchronize threads to avoid race
conditions (§24.9).

¥ To synchronize threads using locks (§24.10).
To facilitate thread communications using conditions on locks (§§24.11-24.12).

(Optional) To use blocking queues to synchronize access to an array queue, linked
queue, and priority queue (§24.13).

1 gggé’tli(%ria)l) To restrict the number of accesses to a shared resource using semaphores

ll (Optional) To use the resource-ordering technique to avoid deadlocks (§24.15).
l To understand the life cycle of a thread (§24.16).

1 ;’Z <1:re)ate synchronized collections using the static methods in the Collections class (§
A7).

#l (Optional) To display the completion status of a task using JProgressBar (§24.18).

mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.2. Thread Concepts.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.3. Creating Tasks and Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.3. Creating Tasks and Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.4. The Thread Class.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.5. Example - Flashing Text.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.7. (Optional) Case Study - Clock with Audio.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.6. GUI Event Dispatcher Thread.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.8. Thread Pools.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.9. Thread Synchronization.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.10. (Optional) Synchronization Using Locks.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.11. (Optional) Cooperation Among Threads.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.12. (Optional) Case Study - Producer-Consumer.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.13. (Optional) Blocking Queues.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.14. (Optional) Semaphores.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.15. Avoiding Deadlocks.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.16. Thread States.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.17. Synchronized Collections.htm
mk:@MSITStore:E:\JAVA\Prentice.Hall.Introduction.to.Java.Programming.Comprehensive.Version.6th.Edition.ebook-LRN.chm::/24.18. (Optional) JProgressBar.htm

Thread Concept

il A thread is the flow of execution of a task in a program (from
beginning to end).

il A task is a program unit that is executed independently of other
parts of the program.

il A thread provides the mechanism for running a task. With Java,
you can launch multiple threads from a program concurrently.
These threads can be executed simultaneously in multiprocessor
systems, as shown in Figure 24.1(a).

ll In single-processor systems, as shown in Figure 24.1(b), the
multiple threads share CPU time, and the operating system is
responsible for scheduling and allocating resources to them. This
arrangement is practical because most of the time the CPU is idle.
5{ does nothing, for example, while waiting for the user to enter

ata.

Figure 24.1.
Running Multiple Thread
(a) Multiple CPU (b) Single CPU

Thread Concept (c.)

#l Multithreading can make your program more responsive and
interactive, as well as enhance performance. For example, a good
word processor (misalnya MS Word) lets you print or save a file
while you are typing. In some cases, multithreaded programs run
faster than single-threaded programs even on single-processor
systems. Java provides exceptionally good support for creating
and running threads and for locking resources to prevent conflicts.

3l When your program executes as an application, the Java
interpreter starts a thread for the main method. When your
program executes as an applet, the Web browser starts a thread

to run the applet.

¥ You can create additional threads to run concurrent tasks in the

program. In Java, each
A thread is essentially

an object that facilitates the execution of a task.

Creating Task and Thread

Creating Task

i Tasks are objects.

il To create tasks, you have to first declare a class
for tasks.

1 A task class must implement the Runnable
interface. The Runnable interface is rather simple.
All it contains is the run method. You need to
Implement this method to tell the system how your
thread is going to run.

1 A template for developing a task class is shown in
Figure 24.2(a).

Figure 24.2. Define a Task

vy B, Rurimehie ThskC Lix . -_ ant cla 35
' — k} . i public class Client {

public wvoid sosmeMethod() {

Cust rask clas:
class TaskClass implements Runnable { _—

public
¥ § & reE3teE an Tnstance o Taskt
public TaskClass(...) { pop—a= TaskClass task = new TaskClass(...);

Thréad thredad = new Thread(task);

public wvoid - Start a thread
Tell system how ©o run custom thread thread.start();

ll Once you have declared a TaskClass, you can create a task using
its constructor. For example,

TaskClass task = new TaskClass(...):;

il A task must be executed in a thread. The Thread class contains
the constructors for creating threads and many useful methods for
controlling threads. To create a thread for a task, use

Thread thread = new Thread(task) ;

¥ You can then invoke the start () method to tell the JVM that the
thread is ready to run, as follows:

thread.start () ;

il The JVM will execute the task by invoking the task's run ()
method. Figure 24.2(b) outlines the major steps for creating a task,
a thread, and start the thread.

Creating Task and Thread Example

Listing 24.1. A program that creates three
tasks and three threads to run them:

1 The first task prints the letter a one
hundred times.

1 The second task prints the letter b one
hundred times.

1 The third task prints the integers 1
through 100.

Contoh Hasil Eksekusi
TaskThreadDemo.java

C:\book>java TaskThreadlemo

aaasababanaasaaaab 1b 2b 3b 4b Sb Eb Th 8 9 10 11 12 13 14 15 16 17 18 19 280 21

2 23 24 25 ZGbababababababababa 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 y2
43 44 45 46 4T 4B 49 SO 51 52 53 54 55 S6 57 58 59 60 E6labababababababababbbbbbb

bbbbbbbbbbbba 62a 63a 64a 65a G6a G7a 68a 69a 7O 71 72 73 74 75 76 77 78 79 80 8

1 82 83 84 85 86 87 Sfabababababababababbbbbbbbbbbbbbbbbbba 89a 98a 91a 92a 93a

94a 95a 96a 97 98 99 100asaasaaassasaasaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaasaa

AAhEAAAEHHEE

C:\book > i
- |

Importance to note:

il Task adalah runable object, sehingga deklarasi
kelas untuk task harus implements Runnable.

1 Thread digunakan untuk menjalankan setiap task

i run () adalah method standar yang digunakan
oleh Thread untuk menjalankan Task

il start () adalah method standar untuk
menjalankan Thread

