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!|_ 1.1 Introduction to

Systems of Equations



Linear Equations

= Any straight line in xy-plane can be
represented algebraically by an equation of

the form: a1x+a2y=b

= General form: define a linear equation in the n
variables X, X,,..., X :

ax+ax+..+ax =b

= Where &;,d,,...,a,, and b are real constants.
= The variables in a linear equation are sometimes

called unknowns.



Example 1
Linear Equations

The equations x+3y=7, y=1X+ 3z+1, and

X —2% —3%+X, =7 are linear.

Observe that a linear equation does not involve any
products or roots of variables. All variables occur only to

the first power and do not appear as arguments for
trigonometric, logarithmic, or exponential functions.

The equations x+3\E/:5, 3X+2y—z+xz=4, and y=SInx
are not linear.

= A solution of a linear equation is a sequence of n numbers

Sy Sy-41 S, such that the equation is satisfied. The set of
all solutions of the equation is called its solution set or
general solution of the equation



Example 2
Finding a Solution Set (1/2)

= Find the solution of (8)4x-2y=1

= Solution(a)

we can assign an arbitrary value to x and solve for vy,
or choose an arbitrary value for y and solve for x .If
we follow the first approach and assign x an arbitrary
value ,we obtain 1 1

1
x=t, y=2t,—= or Xx==t,+=, y=t
1 Y 175 52Ty y==,

= arbitrary numbers {; , are called parameter.

= for example
t1:3yieldsthesolutionx:3,y:1—21 o t, =t



Example 2
Finding a Solution Set (2/2)

= Find the solution of (b) X, —4x, +7%,=5.

= Solution(b)

we can assign arbitrary values to any two
variables and solve for the third variable.

= for example
X, =9+4s- 1, X, =S, Xy =1

= Where s, t are arbitrary values



i Linear Systems (1/2)

= A finite set of linear equations in

the variables X;, X, ,..., X, X +aX +... +a, X =h

IS called a system of linear B

equations or a linear system . QX + 8%+ + 8y X, =
M M M M

= A sequence of numbers

S5 Sy, Syis called a solution
of the system.

amlxl_l_amzxz +"'+amnxn :bm

t An arbitrary system of m

_ _ _ linear equations in n unknowns
= A system has no solution is said

to be inconsistent ; if there is at
least one solution of the system,
It is called consistent.



\ Ay
i Linear Systems (2/2) \\"
= Every system of linear equations has either (@) No solution
no solutions, exactly one solution, or ol b
Infinitely many solutions. \
= A general system of two linear equations:
(Figurel.1.1) a,x+by=c, (a,b, not both zero)
a,Xx+b,y=c, (a,,b, not both zero) (b) One solution

v {pand i,
' C A “

= Two lines may be parallel -> no solution
= Two lines may intersect at only one point
-> one solution
= Two lines may coincide
-> |nfinitely many solution

Y.

(¢) Infinitely many solutions

Figure 1.1.1



i Augmented Matrices

The location of the +’s,
the x’s, and the =‘s can
be abbreviated by writing
only the rectangular array
of numbers.

This is called the
augmented matrix for the
system. e

Note: must be written in
the same order in each
eqguation as the unknowns
and the constants must be
on the right.

A X +apX ... X, = b1
Ay Xy + 8 Xy + .o+ X, = bz

M M

M

M

a'le1_|_a"mZX2_|_"'+a"mn n :bm

llth column
Ay A, .. a, b

8, 8y .. a2n§ b,

MM M M
ay Ay, . Ay by

<«— 1th row



i Elementary Row Operations

The basic method for solving a system of linear equations is to
replace the given system by a new system that has the
same solution set but which is easier to solve.

Since the rows of an augmented matrix correspond to the
equations in the associated system. new systems is generally
obtained in a series of steps by applying the following three
types of operations to eliminate unknowns systematically. These
are called elementary row operations.

1. Multiply an equation through by an nonzero constant.
2. Interchange two equation.
3. Add a multiple of one equation to another.



Example 3
Using Elementary row Operations(1/4)

X 4+ y+22;9 add -2 times X + y_|_222 0 add -3times
thefirst equation thefirst equation
2x+4y—-3z=1 to the second N 2y—7z=-17  tothethird
3x+6y-5z=0 3x+6y-5z= 0
(11 2 9 taﬁgf-”‘ZS;[II:;evi 1 1 2 9 | add -3 times
_ _ _ the first row
2 4 -31 tothe second o 0 2 —-r -l to the third
3 6 -5 0 3 6 -5 0 >




Example 3
Using Elementary row Operations(2/4)

X+ y+ 2z= 9 multiply thesecond x+y+ 2z= 9  add -3times
: the second equation
2y— 7z=-17 equationby— ) y—2z=-  tothe third
Jy-11z=-27 3y-11z= O

11 2 91 mutlytesecond [1 1 2 9 add -3times

1
_ _ row bv= 7 7 thesecond row
0 2 ! 17 y2 01 2 2 to thethird

0 3 -11 -27 0 3 -11 -27




Example 3
Using Elementary row Operations(3/4)

Add -1times the

X+Y+2Z= 9  multply thethird X+Y+2z= 9 second equation

y—lz=-1 equation by -2 y y-lz=-1 to the first N
1 . 3 L= 3
—2Z4=73
112 9 Mulily trethid |1 1 2 9 1 Add L fimes the
_7 _1z row by -2 _7 _17 second row
01 -2 -5 y > |0 1 -3 2 to the first
00 -3 -3z 00 1 3




Example 3
Using Elementary row Operations(4/4)

Add % times

+3z= 3 the third equation « _
. . to the first and £ times
Y=22=—% the third equation y =2
to the second
Add - 11 times
- the thlrd row
11 35 _ —
10 3 2 to the first and% 1 0 0 1
O 1 -4 -—1r times the third row
00 12 32 to the second N 010 2
. _O 0 1 3_

B The solution x=1,y=2,z=3 is now evident.



!'_ 1.2 Gaussian Elimination



Echelon Forms

This matrix which have following properties is in reduced row-
echelon form

. If a row does not consist entirely of zeros, then the first
nonzero number in the row is a 1. We call this a leader 1.

. If there are any rows that consist entirely of zeros, then they are
grouped together at the bottom of the matrix.

. In any two successive rows that do not consist entirely of zeros,
the leader 1 in the lower row occurs farther to the right than the
leader 1 in the higher row.

. Each column that contains a leader 1 has zeros everywhere else.

A matrix that has the first three properties is said to be in row-
echelon form (Example 1, 2).

A matrix in reduced row-echelon form is of necessity in row-
echelon form, but not conversely.



Example 1
i Row-Echelon & Reduced Row-Echelon form

s reduced row-echelon form:

_ o 101 -2 0 1
1 00 4{(1 0O
OO0 0 1 3|]|0O0
Oo10 7,01 O ,
OO0 O O0O0]|0O
O 01 -1/|0 0 1
- - 10 0O 0 0O

= row-echelon form:

1 4 -3 7][/1 1 0][01 2 6 O
01 6 2|01 0/,/]O01 -10
00 1 5/|0 0 0/|0O0O0 O 1




Example 2
More on Row-Echelon and Reduced

Row-Echelon form

o O O Bk

o O o

All matrices of the following types are in row-echelon
form ( any real numbers substituted for the *’s. ) :

*

o O B

All matrices of the following types are in reduced row-

*

*

1
0

*

*

* b

1

o O O Bk

*

o O Bk

*
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0

o O O B+
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echelon form ( any real numbers substituted for the *’s. ) :

© O +r O

o r O O

r O O O

o O o Bk

o O +— O

o O O B

o O +— O
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*

0

*
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O b
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*

*

"




Example 3
Solutions of Four Linear Systems (a)

Suppose that the augmented matrix for a system of
linear equations have been reduced by row operations to
the given reduced row-echelon form. Solve the system.

1 0 0 5
@|0 1 0 -2
0 01 4
Solution (a)
the corresponding system X = 5
of equationsis : — y =-2



Example 3
iSqutions of Four Linear Systems (b1l)

(b)

1 0 0 4 -1
O 1 0 2 6
001 3 2]
Solution (b) free variables
1. The corresponding % +4x%, =-1
system of equations is : X, +2X,= 6
Xg+3X, = 2
leading

variables



Example 3
Solutions of Four Linear Systems (b2)

,=-1-4x, 2. We see that the free variable can be

= 6-2X, assigned an arbitrary value, say t, which
then determines values of the leading

= 2-3X, variables.

X X X
N

w

3. There are infinitely many X
solutions, and the general
solution is given by the X, = 6-2t,
X
X

N

formulas

w
|l
N
|
W
(o



Example 3
i Solutions of Four Linear Systems (c1)

(€)

O O O
© O O o
©O O+ O
o+ O O
o U W N
=

Solution (c)

1. The 4th row of zeros leads to
the equation places no X, + 6X, +4x, =-2
restrictions on the solutions X, +3x%. = 1
(why?). Thus, we can omit

this equation. — Xy +9Xs = 2



Example 3
Solutions of Four Linear Systems (c2)

Solution (c) X, =-2-B6x, - 4%
2. Solying fo_r the leading X, = 1-3x;
variables in terms of the free
variables: _, X, = 2-5X;

3. The free variable can be
assigned an arbitrary

, =-2-6s-4t,

=S
value,there are infinitely ?
many solutions, and the 1-3t
general solution is given by , = 2-5t,

the formulas. —

X X X X X
w
Il

D

t



Example 3
i Solutions of Four Linear Systems (d)

(d)

o O Bk
o +» O
o N O
— O O

Solution (d):

the last equation in the corresponding system of

equation is
: Ox;, +0x, +0x; =1

Since this equation cannot be satisfied, there is
no solution to the system.



i Elimination Methods (1/7)

= We shall give a step-by-step elimination
procedure that can be used to reduce any
matrix to reduced row-echelon form.

O 0 -2 0 7 12
2 4 -10 6 12 28
2 4 -5 6 -5 -1




Elimination Methods (2/7)

= Stepl. Locate the leftmost column that does not consist

entirely of zeros.

00 -2 0 7 12
2 4 -10 6 12 28
2 4 -5 6 -5 -1

Leftmost nonzero column

= Step2. Interchange the top row with another row, to
bring a nonzero entry to top of the column found in Stepl.

(2 4 -10 6 12 28|
00 -2 0 7 12

24 5 6 -5 -1

The 1th and 2th rows in the
preceding matrix were
interchanged.



i Elimination Methods (3/7)

= Step3. If the entry that is now at the top of the column
found in Stepl is a, multiply the first row by 1/a in order to

introduce a leading 1.
(1 2 -5 3 6 14]

O 0 -20 7 12

2 4 -5 6 -5 -1]

The 1st row of the preceding
matrix was multiplied by 1/2.

= Step4. Add suitable multiples of the top row to the rows
below so that all entires below the leading 1 become zeros.

12 53 6 14
00-20 7 12
00 5 0 -17 -29

-2 times the 1st row of the
preceding matrix was added to
the 3rd row.



i Elimination Methods (4/7)

= Step5. Now cover the top row in the matrix and begin
again with Stepl applied to the submatrix that remains.
Continue in this way until the entire matrix is in row-
echelon form. )

12 -53 6 14

00-20 7 12

00 -5 0 =17 =29 Leftmost nonzero
- - column in the submatrix

1 2 -5 3 6 14 : :

. The 1st row in the submatrix
0010 — -6 was multiplied by -1/2 to
OO0 5 0 -17 -29 introduce a leading 1.




Elimination Methods (5/7)

Step5 (cont.)

(1 2 -5 3 6
00 1 0 -1
00 0 0 1
12 -53 6
00 1 0 -2
00 0 0 4
(1 2 53 6
00 1 0 I
00 0 0 1

-5 times the 1st row of the
submatrix was added to the 2nd
row of the submatrix to introduce
a zero below the leading 1.

The top row in the submatrix was
covered, and we returned again Stepl.

Leftmost nonzero column in
the new submatrix

The first (and only) row in the
new submetrix was multiplied
by 2 to introduce a leading 1.

B The entire matrix is now in row-echelon form.



Elimination Methods (6/7)

Step6. Beginning with las nonzero row and working upward, add
suitable multiples of each row to the rows above to introduce
zeros above the leading 1’s.

12-53614 7/2 times the 3rd row of the
00 1 00 1 preceding matrix was added to
the 2nd row.
00 001 2
(1 2 -5 3 0 2]
OO0 1 0O0 1 -6 times the 3rd row was added
to the 1st row.
_O O 0 01 2_
(1 2 0 3 0 7]
O 01 001 5 times the 2nd row was added
00 0O 1 2 to the 1st row.
u 1_'he last matrix is in reduced row-echelon form.



i Elimination Methods (7/7)

= Stepl—Step5: the above procedure produces a
row-echelon form and is called Gaussian
elimination.

= Stepl—Step6: the above procedure produces a
reduced row-echelon form and is called Gaussian-
Jordan elimination.

= Every matrix has a unique reduced row-
echelon form but a row-echelon form of a given
matrix i1s not unique.



Example 4
Gauss-Jordan Elimination(1/4)

= Solve by Gauss-Jordan Elimination
X +3X, — 2%, + 2X, =0
2% +6X, —5X; — 2X, +4X, — 33X, =-1
S5X, +10x, +15%,= 5
2X, + 6X, + 8X, +4X,—18x;= 6
= Solution:
The augmented matrix for the system is

1 3 -2 0 2 0 0]
2 6 -5 -2 4 -3 -1
00 5 10 0 15 5

2 6 0 8 4 18 6




Example 4
Gauss-Jordan Elimination(2/4)

= Adding -2 times the 1st row to the 2nd and 4th rows gives
(1 3 -2 0 2 0 O]

o 0 -1 -2 0 -3 -1
O 0 5 10 0 15 5
0 0 4 8 0 18 6
= Multiplying the 2nd row by -1 and then adding -5 times the

new 2nd row to the 3rd row and -4 times the new 2nd row
to the 4th row gives

1 3 -202 0 O
00 1 2 0 -3 1
00 0 00 0 O
00 0 00 6 2



Example 4
Gauss-Jordan Elimination(3/4)

= Interchanging the 3rd and 4th rows and then multiplying the 3rd
row of the resulting matrix by 1/6 gives the row-echelon form.

1 3 -2 0 2 0 0
00 -1 -2 0 -3 -1
00 0 O 0 1 &
00 0 0 0 0 O

= Adding -3 times the 3rd row to the 2nd row and then adding 2
times the 2nd row of the resulting matrix to the 1st row yields the
reduced row-echelon form.

(1 3 0 4 2

o rr O O
o O

0 0
0 0
0 0

o O B

2 0
O O
0O O

O wk



Example 4
Gauss-Jordan Elimination(4/4)

= The corresponding system of equations is
X, + 3X, +4x,+2x, =0

X5+ 2X%, =0

X =73
= Solution

The augmented matrix for the system is
X, = —3X, —4X, — 2X
X, = —2 X,
Xg = =

= We assign the free variables, and the general solution is
given by the formulas:

X, ==3r—4s—-2t, X, =r, X;=-25, X, =S, X; =t, X, =1



i Back-Substitution

= |t is sometimes preferable to solve a system of linear
equations by using Gaussian elimination to bring the
augmented matrix into row-echelon form without
continuing all the way to the reduced row-echelon
form.

= When this is done, the corresponding system of equations
can be solved by solved by a technique called back-
substitution.

= Example 5



Example 5
ex4 solved by Back-substitution(1/2)

= From the computations in Example 4, a row-echelon form from
‘the augmented matrix is

1 3 -2 0 2 0 0]
o 0 -1 -2 0 -3 -1
0O 0 O o o 1 L
0 0 O O 0 0 0|
= To solve the corresponding system of equations
X +3X, +4x,+2x, =0
X, + 2X, =0
X =3

= Stepl. Solve the equations for the leading variables.
X, = —3X, + 2X; — 2X¢
X, =1-2x, -

_ 1
X6_3

3 Xg



Example5
ex4 solved by Back-substitution(2/2)

Step2. Beginning with the bottom equation and working upward,

successively substitute each equation into all the equations above it
= Substituting x6=1/3 into the 2nd equation

X, = —3X, + 2X,; — 2X
X, = —2X,
Xe = 5
= Substituting x3=-2 x4 into the 1st equation
X, = —=3X, + 2X; — 2X¢
X, = —2X,
X :%

Step3. Assign free variables, the general solution is given by the
formulas.

X, =—-3r—-4s—-2t, X, =r, X;=-2S, X, =S, X, =t, X, =%



Example 6
Gaussian elimination(1/2)

= Solve X+ Yy+2z=9 Dby Gaussian elimination and
2x+4y—-3z=1  back-substitution. (ex3 of Sectionl.1)
3X+6y—-5z=0 _ _
= Solution 11 2 9
= We convert the augmented matrix | 2 4 -3 1
'3 6 -5 0
11 2 9
= to the ow-echelon form 0 1 -1 17
2 2
0 0 1 3 |
= The system corresponding to this matrix is
X+y+2z=9, y—-<Zz=-3, 2=3




Example 6
i Gaussian elimination(2/2)

= Solution
= Solving for the leading variables X=9- Y- 22,
y=-%+%2
Z=3
= Substituting the bottom equation into those above
X =3-Y,
y = 2,
z = 3

= Substituting the 2nd equation into the top

x=1 y=2 z=3



Homogeneous Linear Systems(1/2)

= A system of linear equations is said 8uX +8pX +... +&,X, =0
to be homogeneous if the constant  a, X, +a,X, +... +a,, X, =0
terms are all zero; that is , the M M M M

system has the form: —
y a X +a X +.+a X =0

= Every homogeneous system of linear equation is
consistent, since all such system have X =0,X, =0,..., X,
as a solution. This solution is called the trivial solution;
If there are another solutions, they are called nontrivial

solutions.
= There are only two possibilities for its solutions:
= The system has only the trivial solution.
= The system has infinitely many solutions in addition to
the trivial solution.

=0



Homogeneous Linear Systems(2/2)

= In a special case of a
homogeneous linear
system of two linear
equations in two

U n kn Owns: (flg 1 - 2 - 1) () Only r_hc 1'1"1_\:'1:11 solution
a X+ bly =0 (al’ bl not both ZerO) T
a,x+b,y=0(a,,b, not both zero) E

|ar‘u:|
adx+ byy=0

(&) Infinitely many solutions

Figure 1.2.1



Example 7
Gauss-Jordan Elimination(1/3)

2X +2X,— X + X% =0
— X, +2%—-3X,+ X% =0

= Solve the following
homogeneous system of linear A

equations by using Gauss- X+ X, — 2% -% =0
Jordan elimination. X, + X, + X =0
s Solution 2 2 10 1 O
= The augmented matrix 1-1 2 310
1 1 -2 0 -10
0 0 0 1 0 O
= Reducing this matrix to 11 00 1 0
reduced row-echelon form O 01 010
O 001 OO
0 0 00 0 0




Example 7
Gauss-Jordan Elimination(2/3)

Solution (cont)
= The corresponding system of equation X, + X, +X% =0

X +%=0
X, =0
= Solving for the leading variables is X =—X, — Xs
X=X
X, =0
= Thus the general solution is

X =—S—-1t, X,=S, X;,=—t, X, =0, X, =t

= Note: the trivial solution is obtained when s=t=0.



Example7
Gauss-Jordan Elimination(3/3)

= Two important points:

= Non of the three row operations alters the final column of
zeros, so the system of equations corresponding to the
reduced row-echelon form of the augmented matrix must
also be a homogeneous system.

= If the given homogeneous system has m equations in n
unknowns with m<n, and there are r nonzero rows in
reduced row-echelon form of the augmented matrix, we
will have r<n. It will have the form:

A Xy "‘ZO:O Xk1=—Z()
A X5 -I-Z():O Xy 2 :_Z ()
@) M M

X +2,0=0 1) X =-2,0 (2)



i Theorem 1.2.1

A homogeneous system of linear
equations with more unknowns than
equations has infinitely many solutions.

= Note: theorem 1.2.1 applies only to
homogeneous system

= Example 7 (3/3)



i Computer Solution of Linear System

= Most computer algorithms for solving large
linear systems are based on Gaussian
elimination or Gauss-Jordan elimination.

= |Sssues
= Reducing roundoff errors

= Minimizing the use of computer memory space
= Solving the system with maximum speed



1.3 Matrices and
Matrix Operations




i Definition

A matrix Is a rectangular array of numbers.
The numbers In the array are called the
entries in the matrix.




Example 1
i Examples of matrices

= Some examples of matrices entries
"1 2] =2 -
3 0,[2 10 -3,/0 £ 1 Q [4]
-1 4] 0 0 O
row matrix or row vector column matrix or
s Sjze column vector
3x2, 1x4, 3 X 3, 2x1, 1x1
# columns

H rows



Matrices Notation and Terminology(1/2)

= A general m x n matrix A as a,, ap, .. a,
A _ ad, A, .. a,,
M M M
A, Q,, - A, |

= The entry that occurs in row | and column j of matrix
A will be denoted a; or (A). . If &; is real
number, it IS common to be referred as scalars.



Matrices Notation and Terminology(2/2)

= The preceding matrix can be written as
Lan men or \.aijJ

= A matrix A with n rows and n columns is called a square
matrix of order n, and the shaded entries &;,85,A ,a,,

are said to be on the main diagonal of A.

all a12 [ aln
a21 a22 [ a2n
M M M
_aml am2 a'mn _



i Definition

Two matrices are defined to be equal
If they have the same size and their
corresponding entries are equal.

If A=|a, |and B = |b; |have the same size,
then A =Bif andonly if a;, =b, foraliand J.



Example 2
i Equality of Matrices

s Consider the matrices
2 1 2 1 2 1 0
A= ,  B= , C=
B TR A S b

= If x=5, then A=B.
= For all other values of x, the matrices A and B are not

equal.
= There is no value of x for which A=C since A and C

have different sizes.




i Operations on Matrices

= If A and B are matrices of the same size, then the
sum A+B is the matrix obtained by adding the entries
of B to the corresponding entries of A.

= Vice versa, the difference A-B is the matrix obtained
by subtracting the entries of B from the
corresponding entries of A.

s Note: Matrices of different sizes cannot be added or

subtracted.
(A"' B)ij = (A)ij + (B)ij = a; + by

(A_ B)ij = (A)ij — (B)ij = a; — b;



Example 3
Addition and Subtraction

s Consider the matrices
(2 1 0 3] 4 3 5 1]

A=|-1 0 2 4|, B=|2 2 0-1,C:B ﬂ
4 -2 7 0] '3 2 -4 5]
= Then
(2 4 5 4] (6 -2 -5 2]
A+B=|1 2 2 3|, A-B=|-3 -2 2 5
' 7 0 3 5 |1 -4 11 -5

= The expressions A+C, B+C, A-C, and B-C are undefined.



Definition

If A Is any matrix and c Is any scalar,
then the product cA is the matrix
obtained by multiplying each entry of
the matrix A by c. The matrix cA is
said to be the scalar multiple of A.

In matrix notation, iIf A = [aij  then
(CA)ij - C(A)ij = Cq



Example 4
i Scalar Multiples (1/2)

s For the matrices

2 3 4 0 2 7 9 -6 3
A: , B: . C:
[1 3 J {—1 3 —5} {3 0 12}

= We have
4 6 8 0 -2 -7 3 -2 1
2A= , (-1)B= , 1C=
2 6 2 1 -3 5 1 0 4

= It common practice to denote (-1)B by -B.



Example 4
Scalar Multiples (2/2)

[f Ay, A>, ..., A, are matrices of the same size and ¢y, ¢», ..., ¢, are scalars, then
an expression of the form
crhAy+ calo+ i Grs

is called a linear combination of A, A,. . ... A, with coefficients ¢, ¢,....,c,. For

&

example, if A, B, and C are the matrices in Example 4, then

2A—B+3:C=2A+(-1)B+1iC

_468+0—2—7+3—2 17 [7 2 2
12 6 2 . % 5 1 0 4| |4 3 11

1s the linear combination of A, B, and C with scalar coefficients 2. —1. and l



Definition

s If A Is an mxr matrix and B IS an rxn matrix,
then the product AB is the mxn matrix whose
entries are determined as follows.

= To find the entry in row | and column j of AB,
single out row | from the matrix A and column |
from the matrix B .Multiply the corresponding
entries from the row and column together and
then add up the resulting products.

A B AB
m X

7 .
T Inside T
Outside




Example 5

Multiplying Matrices (1/2)

s Consider the matrices

4 1 4
1[]24]3013
N = p = — &

2 6 0
2 T 3

s Solution

L2

D —

= Since Ais a 2 x3 matrix and B is a 3 x4 matrix,

the product AB is a 2 x4 matrix. And:

ai a2 ey
ar ar> -+ a2y Chi1 b1y - b1,
: : bar ban -+ GEy
AR = : : :
di ] di2 0 iy z 2 :
: : _br-'l b .- b."’j
| dml Um2 - L |

the entry (AB);; inrow i and column j of AB 1s given by

(AB);; =ayby; —aphss - apalbs; o - =i dg by

(4

(5)



Example 5
Multiplying Matrices (2/2)

4 1 4 3
12906 o 5 1| = ({0000
2 60l T ¢ |7 |CO0ORIC

2-4)4+(6-3)+(0-5) =26

The entry in row | and column 4 of’ A B 1s computed as follows.

1 1 4 3

1 2 4
[2 . 0} 0 —1 3
2 7 5

L L L {13
.

(-3 @2-1)EEF-2)=13

[ —

The computations for the remaining products are

(1-4) +@Q2-0)+@&-2)= 12
1-D—Q-)+&-7)= 27
(1-4)+@-3)+@-5 =30 12 27 30 13
(2 - 3 4 (B-10) — (0 - 2) 8 [ '

QC-D—(6-1)+ @O 7)=—4
2-3)+ @G- +(0-2)= 12

—4 26 12



Examples 6
Determining Whether a Product Is Defined

= Suppose that A ,B ,and C are matrices with the following
sizes:

A B C
3x4 4 x/ 7 %3

s Solution:

= Then by (3), AB is defined and is a 3 x7 matrix; BC is
defined and is a 4 x3 matrix; and CA is defined and is a 7 x4
matrix. The products AC ,CB ,and BA are all undefined.



Partitioned Matrices

A matrix can be subdivided or partitioned into smaller matrices
by inserting horizontal and vertical rules between selected rows
and columns.

For example, below are three possible partitions of a general 3 x4
matrix A .

The first is a partition of A into
four submatrices A 11 ,A 12,
A 21 .and A 22.

The second is a partition of A
Into its row matricesr 1 ,r 2,
andr 3.

The third is a partition of A
Into its column matrices c 1,
c2,c3,andc4.

A=

A=

A =

i

ajz|

a2

i

a3

{am3

aiy
a2y

13

—_—

i

aaz

a2

a3

as

| a3y

aiy

]

i

a3

14

i3]

1T

AN
7]

3]

a3

a2

32

{37

a3y

oada
(i)

(]

a3y

aiy
€2y

a3y

_[An Ap
LAy Ap



Matrix Multiplication by columns

and by Rows

Sometimes it may b desirable to find a particular row or column of a
matrix product AB without computina the entire product.

Jjth column matrix ot AB = A[ jth column matrix of B]

(th row matrix of AB = [ith row matrix of A]B

(6)

L/

=

Ifal,a2,....amdenote the row matricesof Aand b1l ,b2, ....bn
denote the column matrices of B ,then it follows from Formulas

(6)and (7)that

AB = A[b,

b, --- b, =[Ab, Ab;

(AB computed column by column)

a; a1 B
a» azB
_am_ _am B

(A B computed row by row)

Ab, |

)



Example 7
i Example5 Revisited

= This is the special case of a more general procedure for
multiplying partitioned matrices.

= If A and B are the matrices in Example 5,then from (6)the
second column matrix of AB can be obtained by the
computation & 1§l

1 2 4 L ee
2 (& () ___.. o —d

S —

! f

Second colunmmn Second column
|||_!r'il "I..|.||Ij.I

= From (7) the first row matrix of AB can be obtained by the
computation r 1 4 ;1
4] 3]

1 2 0 —I1

2 7 3

= [12 27 30 13] -~

L First row of 4 Firstrow of 48 —



Matrix Products as Linear
Combinations (1/2)

Then

Ax

oo

dyp o dp

dy| Ay

_“H.' | 2

ajpxXy + apxy +- 0+ dipky
az Xy + agXy + 0=+ A2,%,

(Ay1X1 T G2 X7 froonnets U Xn

Uy
{2y
”nm_
o]
o
= _'{'J
= i i

and X =

+ X2

_|_ e '—l—.ll.'”

py

oy

ﬁr.F.‘n'J".F

(10)



Matrix Products as Linear
Combinations (2/2)

B In words, (10)tells us that the product A x of a matrix
A with a column matrix x is a linear combination of
the column matrices of A with the coefficients coming
from the matrix x .

B In the exercises w ask the reader to show that the
product y A of a 1xm matrix y with an mxn matrix A
IS a linear combination of the row matrices of A with
scalar coefficients coming from vy .



Example 8
‘L Linear Combination

The matrix product

-1 3 2 2 |
1 2 % |-t =<9
2 1 -2 3 =

can be written as the linear combination of column matrices

Fo, — . e — T ——

3 3 2 1
2 1| =12 +3|—-53|=|-Y
2 | —2 -
The matrix product
—1 3 2
[1 =9 = 3] | 2 =3 | =[-16 —1I8 33]
2 | -2

can be written as the linear combination of row matrices

I[—1 3 2] — 911 2 =3]1-3][2 | «2]=[-16 :—18

I'\.!-‘I

N



Example 9
Columns of a Product AB as
Linear Combinations

We showed in Example 3 that

s CBEE

4 1 4 3
1 2 4 , 12 27 30 13
-‘[ B = & {} —] ::I" ] — ; - 5
2 6 1 5 . 5 - 8 —4 26 12

The column matrices of AFB can be expressed as linear combinations of the column
matrices of A as follows:

[12 4_]ﬁ 5 [27 . [4]
| 8] w8
[ 27 17 [2] 4]
— — S
_—4} _Ed _{n_ _'[}d
307 4 1] 4,3 [:277 s 47
iy - 2 2
&b | i | e W3l
[137] 1_]ﬁ+ PE_+,\_4ﬂ
== 'l
_lzd _Ed _f‘n_ _'[J'd ’




Matrix form of a Linear System(1/2)

B Consider any system of m Ay Xy + a8p X, + ..+ 8, X, = by
. . . a e +a@a, X_ =D
linear equations in n unknowns. ~ % "1 22 72 2n 2 n 2

M M M M

B Since two matrices are equal if _ _
A X FapX ... T X,

b,

and only if their corresponding B, X +8,X, + .. + 8, X b
. X + . X

M

b

N

entries are equal. M M M
| B Xy A Xo ot A X,

m

a X+ a, ,X, + .. +a., X, =Db,

B The mx1 matrix on the left side  [a, a, .. &, [ X b,
of this equation can be written A Sy e S || X | b,
as a product to give: M M M M

By By o B [ X [P




Matrix form of a Linear System(1/2)

If w designate these matrices by A ,x ,and

b ,respectively, the original system of m equations in n
unknowns has been replaced by the single matrix
equation AXx =b

The matrix A in this equation is called the coefficient
matrix of the system. The augmented matrix for the
system is obtained by adjoining b to A as the last
column; thus the augmented matrix is

_n'|| il i1n J'r:r'|

(171 (1727 Eir (25 by

(A |b] =

H |l..|fl_;ll__l I I:-;_”ll : e I:.;.i'.'.'.l-.' ]'I.}I-H



i Definition

If A is any mxn matrix, then the transpose

of A ,denoted by A',is defined to be the
nxm matrix that results from interchanging

the rows and columns of A ; that Is, the
first column of A' is the first row of A the

second column of A'is the second row of
A ,and so forth.




Example 10
Some Transposes (1/2)

The following are some examples of matrices and their transposes.

o a2 fdy )4 2 3
A= o a2 a2y fd24 | . == | 41, i = “ 3 5]
diy diz a3z 3y 5 6
& o (E | 1
= 3
: a2 dr2  din - 2 ] =y -
AT =" 7= = BT =|" ., CT =13
€1y dz3z  d3z 3 4 6 _
&
dlg dz2q4 d3zg

D



Example 10

i Some Transposes (2/2)

s Observe that

(A")5 =(A)5

In the special case where A is a square matrix, the
transpose of A can be obtained by interchangin

: . 9
entries that are symmetrically positioned about the
main diagonal.

| =2 4 e T, i 8 &
4= i 7 0] — 0 ‘H“H m g T e | 7 Q
-5 & B 3 (8 e 4 0

6



i Definition

= If Ais a square matrix, then the trace
of A ,denoted by tr(A), is defined to be
the sum of the entries on the main
diagonal of A .The trace of Ais
undefined if A Is not a square matrix.




Example 11
‘L Trace of Matrix

The following are examples of matrices and their traces.

. 5 -1 2z 7
dip  dyp  dp .
35 =8 4
A= y dyy dxy |, B =
2 7 =3
aiy dzz ayn
- - 4 -2 1 0

tl‘(A)Zﬂ']l*Fﬂzz*Fﬁ}g tl‘(B)Z—l +54+7+0=11



i Determinants

1. Determinants by Cofactor
Expansion

2. Evaluating Determinants by Row
Reduction

3. Properties of Determinants;
Cramer’s Rule



1  Determinants by Cofactor
Expansion

DEFINITION 2 If A is an n x n matrix, then the number obtained by multiplying
the entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called

cofactor expansions of A. That is,
det(A) = a1;C1; + az2;Caj + - - - + a@njChj (3)

|cofactor expansion along the jth column]

and
det(A) = ainCin +ai2Ciz + -+ - + @inCin (6)

[cofactor expansion along the ith row|




> EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

3 1 0
A=1—-2 —4. 3
5 4 -2
by cofactor expansion along the first row.
Solution
3 1 0
—4 3 -2 3 -2 —4
det(A)=|—-2 —4 3 =3‘ ‘—]‘ l+[l‘ ‘
§ 4 o 4 -2 3 =2 T

=B Ay il e e

P EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matnx in Example 3, and evaluate det( A} by cofactor expansion along the
first column of A.

Solution
3 3 0
det(A)=|-2 -4 3 =3'_1 _3‘—{—3;‘}1 _E'H]_i g‘
& & =3

=3(—4) — (=2)(=2) +5(3) = -1

This agrees with the result obtained in Example 3.



A technique for determinants of
i 2x2 and 3x3 matrices only

> EXAMPLE 7 A Technique for Evaluating 2 x 2 and 3 x 3 Determinants

X e T
— .:.-'='-’.: == —?__ R A g = —
4 ol = |75 =D& =-10
i "y
i 2 3 S R NG AT
-4 5 6|=| 4 5 & >4 5
7 -8 9 =87 9 N =8

=[454+84+96] —[105—-48-T72] =240 <



2. Row Reduction and Determinants

THEOREM 2.2.3 Let A be an n x n matrix.

(@) If B is the matrix that results when a single row or single column of A is multiplied
by a scalar k. then det(B) = k det(A).

(b) If B is the matrix that results when two rows or two columns of A are interchanged,
then det(B) = — det(A).

(c) If B is the matrix that results when a multiple of one row of A is added to

another row or when a multiple of one column is added to another column, then
det(B) = det(A).

Table 1
Relationship Operation
ka,, ka,, ka, ay Oy s The first row of A is
L) ] dy, |=Kk|dy drn an mu]t:ip]:iv:d b}" k.
i3 fd3z di3 t3) 33 di3
det(B) = kdet(A)
Ay o ) i 4z The first and second rows
Ay iz iz |=— |y A dy GI"A are inter{:hﬂnged
sy d3z iz 31 3z dss
det(B) = —det(A)

a,, + ka,, a,+ka,, a;+ka, a;, dpp ap A multiple of the second
e e @y |=|ay @n an row of 4 15 added to the
[rEY iz [1ERS dy 3y iy ﬁrsi TOwW.

det(B) = det(A)




3. Cramer’s Rule

THEOREM 2.3.7 Cramer's Rule

If Ax = b is a system of n linear equations in n unknowns such that det( A) # 0, then
the system has a unique solution. This solution is

_ det(A;) o det( A,) o det(A,,)
T det(A) T 7 det(Aa) T " det(A)

Xy

where A; is the matrix obtained by replacing the entries in the jth column of A by
the eniries in the matrix




Cramer’s Rule

> EXAMPLE 2 Using Cramer's Rule to Solve a Linear System
Use Cramer’s rule to solve
x; + +2x;= 6
—3x; + 4x; + 6x;, =30
—Xx1 —2x2 4+ 3x:= 8

Solution _ = =
| 0 2 6 0 2
A=]-3 4 6 A;=|30 4 6],
-1 =2 3] | 8 =2 3
- 1w 1 B @6
A, =|-3 30 6|, A;=|-3 4 30
b=l 3 =l 28 3B
Therefore,
—_— det(A;) _ —40 _ —10 el det(42) _ 72 _ 18
det(A) 44 117 ™°  dettA) 4 11°
det(A;) 152 38
X3 = =

~ det(A) 44 11



i Euclidean Vector Spaces

- 1 Vectors in 2-Space, 3-Space,
and n-Space
- 2 Norm, Dot Product, and Distance in R"
- 3 Orthogonality
- 4 The Geometry of Linear Systems
« 5 Cross Product



1. Vectors

i Addition of vectors by the
parallelogram or triangle rules




‘L Subtraction;

Scalar
Multiplication:




Properties of Vectors

THEOREM 311 If u, v, and w are vectors in R", and if k and m are scalars, then:
(@) u+v=v+u

(b) (u4+v)+w=u+(v+w)

c) u4+0=04+u=u

(d) ut(—u)=10

(¢) kin+v)=ku+kv

(/) (k+mju=ku+mu

(g) kimu) = (km)u

(h) lu=u



Section 3.2 Norm, Dot Product,
and Distance in R"

N

DEFINITION 1 If v = (v, v3, ..., v,) 18 a vector in R", then the norm of v (also
called the length of v or the magnitude of v) is denoted by ||v||, and is defined by the
formula
vl = vVl + 2+ 02+ 402 (3)
1

0=V
vl

Unit Vectors:



The Dot Product

=7
u u 0
i
i /_\ :
> [> < + [> >
¥ u ¥

¥

i The angle # between u and v satisfies 0 <9< 7.

DEFINITION 3 If u and v are nonzero vectors in R? or R?. and if @ is the angle
between u and v, then the dor product (also called the Fuclidean inner product) of
u and v is denoted by u - v and is defined as

u-v = [ull|[v] cos® (12)
If u = 0 or v = 0, then we define u - v to be 0.

The sign of the dot product reveals information about the angle & that we can obtain

by rewriting Formula (12) as e

fufl{iv]

cost =

(13)



The Dot Product

DEFINITION 4 Ifu= (uy,u3,...,u,)and v= (v, 1,..., V,) are vectors in R",

then the dof product (also called the Euclidean inner product) of u and v is denoted
by u - v and is defined by

u-v=iv +uto+---+u,v, (17)




i Properties of the Dot Product

THEOREM 3.2.2 Ifwu, v, and w are vectors in R", and if k is a scalar, then:

(@) u-v=v-u [Symmetry property]
(b) u-(v+w)=u-v+u.w | Distributive property]
(c) kiu-v)=(ku).v [Homogenelty property]

(d) vev=0andv-v=0ifandonlyifv =10 [Positivity property]|

THEOREM 3.2.3 Ifu, v, and w are vectors in R", and if k is a scalar, then:
(@ 0.v=v.-0=0

by (u+v)-w=u-w+v.w

) u-(v—w)=u-v—u-w

d) (u—v)-w=u-w—v.w

() k{u-v)=u-(kv)



Cauchy-Schwarz Inequality

THEOREM 3.2.4 Cauchy-Schwarz Inequality
L B R T Up) andv = (v, 12, ..., v, ) are vectors in R" ., then

lu-v| < [[ull[|v] (22)
or in terms of componenis

Uy + Ualy + - U, < (U7 Uy -+ T vy 4 )
(23)



Dot Products and Matrices

T-'ll)l‘f.‘ 1
Form Dot Product Example
- 1 5
u —3 av=[1 =3 5]|4|=-7
ua ».:.Dlumn _ _ 5 0
matrix and v a v=ulv=v"nu =
column matrix 3 I
v 4 vig= ['f. 4 U] =3 |=-7
0 5
5
; u=|[1 -3 3] uv=[1 -3 35]14|=-7
u a row matrix 0
and v a column v=uv=vu’ 2
matrix v=4 _ ]
0 viu' =[5 4 0]|-3|[=-7
5
1
1 vu=[5 4 0]|-3|=-7
u a column N - iy 5
matrix and v a sv=vu=u’v’ 5 2
row matrix " _ ) 2
v=[5 4 0] u'v =[1 -3 5](4|=-7
0
5
! =1 -3 5]|4|=-7
u a row matrix s [] g 5] 0
and v a row v=w' =vu'
matrix v [5 4 ﬂ] 1
w' =[5 4 0]|-3|[=-7
5




3 Orthogonality

DEFINITION 1 Two nonzero vectors u and v in R" are said to be orthogonal (or
perpendicular)ifu - v = 0. Wewill also agree that the zero vector in R” 1s orthogonal
to every vector in R". A nonempty set of vectors in R" is called an erthogonal set 1f

all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors
1s called an erthonormal set.




Orthogonal Projections

THEOREM 3.3.2 Projection Theorem

Ifwand a are vectors in R", and if a # 0, then u can be expressed in exactly one way
in the form u = w + wa, where w is a scalar multiple of a and w: is orthogonal
fo a.

r '3 "| -"-_ ?1 |,..\ 7 .-
u | u | | u
| Ws | | "
I | |
= > e S ‘
. : . :




Point-line and point-plane
Distance formulas

THEOREM 3.34
(@) In R? the distance D between the point Pa(xq, yo) and the lineax + by +¢c =10

is
axg +byvo+c
e laxg + byo + ¢l (15)
Va4 b?
(b) In R® the distance D between the point Py(xg, ¥y, 2p) and the plane
ax +by+ecz+d=0is
axg+ bvg + cZp +d

D— laxy + byp o +d| (16)

Val + b2 + 2



4. The Geometry of Linear Systems

THEOREM 3.4.1 Let L be the line in R* or R? that contains the point xy and is
parallel to the nonzero vector v. Then the equation of the line through x, that is

parallel to v is
X =Xg+1v (1)

If xop = 0, then the line passes through the origin and the equation has the form
X =4y (2)

THEOREM 3.4.2 Let W be the plane in R* that contains the point xy and is parallel
to the noncollinear vectors v, and v,. Then an equation of the plane through x, that
is parallel to vy and v, is given by

.'i=x|}—|—f|'\’l -|—I2\’2 (3}

If xo = 0, then the plane passes through the origin and the equation has the form
X =HVv1 + vz 4

X= 1.].+ r]"l + fﬂz‘?

¥




DEFINITION 1 If x; and v are vectors in R”, and if v is nonzero, then the equation
X =Xg+1v (3)

defines the line through xy that is parallel to v. In the special case where x5 = 0, the
line 1s said to pass through the origin.

DEFINITION 2 Ifxg, vy, and v, are vectors in R", and if v; and v, are not collinear,
then the equation
X=Xg+hHV1I+ V2 (6)

defines the plane through x, that is parallel to v, and v,. In the special case where
xp = 0, the plane is said to pass through the origin.




5 Cross Product

DEFINITION 1 If u = (ui, u2, u3) and v = (v, vz, v3) are vectors in 3-space, then
the cross product u x v 1s the vector defined by

U X V= (U303 — H3la, U3V — U V1, U2 — H3ly)

) (b

or, in determinant notation,




i Cross Products and Dot Products

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

Ifu, v, and w are vectors in 3-space, then

(@) u-(uxv)y=0 (u % v is orthogenal to )

() v.(uxv)=0 (u s v is orthagonal to V)

() lusxvl* =lul*lIv]® —(u-v)®  (Lagrange’s identity)

(d) wx(vxw)=(u-w)v—(u-v)W (relationship between cross and dot products)

e UXV)XW=1(10l+-W}V— (VWU (relationship between cross and dot producis)
iy P



Properties of Cross Product

THEOREM 352 Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:

(@) uxv=—(vxu)

() ux(v4+w)=(uxv)+(uxw)
(c) (u4+v)xw=(uxw)+ (vxw)
(d) kiuxv)=(ku) xv=nux(kv)
(e) ux0=0xu=10

(f) uxu=10



Geometry of the Cross Product

o
2

a3 v|| = [full|lv] sin®

THEOREM 3.5.3 Area of a Parallelogram

If wand v arevectors in 3-space, then |u x v|| is equal to the area of the parallelogram
determined by u and v.



Geometry of Determinants

THEOREM 3.5.4
(@) The absolute value of the determinant

det I:H] HE]
" ()
is equal to the area of the parallelogram in 2-space determined by the vectors

u = (uy,u;) and v = (vy, vp). (See Figure 3.5.7a.)
(b) The absolute value of the determinant

i1 M2 3
det| vy v 1q
g w3

is equal to the volume of the parallelepiped in 3-space determined by the vectors
U= (Uy, Uy, i3), v= (v, 2, v3), and w = (w, w,, ws). (See Figure 3.5.7b.)



Some of these slides have been adapted/modified in part/whole from the following
textbook:

Howard Anton & Chris Rorres. (2000). Elementary Linear Algebra. New York: John Wiley &
Sons, Inc



