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Chapter 1

Introduction

The aim of this thesis is to get a better insight in the mechanisms of rain-wind
induced vibrations of elastic structures such as cables or bridges. The Erasmus
bridge in Rotterdam and the Meikonishi bridge in the Nagoya harbor in Japan are
examples of such elastic structures. The cables of these bridges are stable under
dry wind conditions (no rain), but can become unstable when it is raining (see also
[13]). This instability mechanism is due to the presence of a water rivulet along the
surface of the cable. This mechanism was studied experimentally by Hikami [13],
Matsumoto and others [17, 18]. Another instability mechanism can be caused by
torsional flutter as for instance described in [21]. This instability mechanism might
have been the cause of the collapse of the Tacoma Narrows bridge. In this thesis the
vibrations are described in an ODE (that is, ordinary differential equation) setting.
The first instability mechanism can then be described by spring type oscillators, and
the torsional instability mechanism can be modelled by seesaw type oscillator (see
Figure 1.1). The last 15 years a lot of researchers ( Van der Beek, Van der Burgh,
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Figure 1.1: Cross section of the spring and the seesaw type model.

Van Horssen, Haaker, Waluya, Lumbantobing ( see [27, 31, 8, 34, 15] ) studied these
type of oscillators for which the rivulet of water had a fixed position on the surface
of the oscillators. In this thesis it is assumed that the position of the water rivulet
on the surface of the oscillator varies harmonically in time. The equations that will
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be derived in this thesis are the form

z̈ + z = εH(z, ż, t), ˙=
d

dt
(1.0.1)

where z = z(t) and ε is a small parameter. First order or higher order averaging
techniques, strained parameters methods, and numerical methods are used to de-
termine the behaviour of the solutions of (1.0.1). Phase plane plots of the averaged
equations will be presented by using the software package DSTOOLS, and a Gröbner
basis algorithm in the software package Maple will be used to determine the critical
points of the averaged equations.
The existence and the stability of periodic solutions of (1.0.1) by using a second order
averaging technique (when the vector field by first order averaging vanishes) will be
studied in chapter 2. Also generalizations to higher order will be considered. A spe-
cial averaging algorithm for the computation of higher order approximations of the
fundamental matrix of linear equations with periodic coefficients will be presented.
As an application the existence and stability of periodic solutions of the following
inhomogeneous second order equation with time-dependent damping coefficients will
be studied in detail

ẍ + (c+ ε cos 2t)ẋ + (m2 + α)x+ A cosωt = 0, (1.0.2)

where c, α, and A are of O(ε), 0 < ε � 1, and where m and ω are positive integers.
In chapter 3 the following second order differential equation with a time-dependent
damping coefficient

ẍ + (ε cos 2t)ẋ + λx = 0 (1.0.3)

will be studied. In fact (1.0.3) is a special case of (1.0.2). In particular the coex-
istence of the periodic solutions corresponding to vanishing domains of instability
is investigated. It will also be shown that (1.0.3) can be used to study the linear
stability properties for rain-wind induced vibrations of the oscillator of spring-type.
In chapter 4 a nonlinear equation is derived to study the rain-wind induced vibra-
tions of an oscillator of spring-type. As will be shown the presence of raindrops
in the wind-field may have an essential influence on the dynamic stability of the
oscillator. In this model equation the influence of the variation of the mass of the
oscillator due to incoming flow of raindrops hitting the oscillator and a mass flow
which is blown and shaken off, is investigated. The time-varying mass is modelled
by a time harmonic function whereas simultaneously also time-varying lift and drag
forces are considered.
Finally in chapter 5 a nonlinear equation will be derived to study the rain-wind
induced vibrations of an oscillator of see-saw type. The model equations will be de-
rived under the assumption that the position of the rivulet of water on the surface of
the oscillator varies harmonically in time. In the last two chapters the existence and
the stability of time-periodic solutions or of time-modulated solutions will be inves-
tigated. Several Hopf and saddle-node bifurcations will occur when the amplitude
of the movement of the water rivulet on the oscillator is varied.



Chapter 2

Higher Order Averaging : periodic

solutions, linear systems and an

application †

Abstract. Existence and stability of periodic solutions by using second order aver-
aging when the vector field by first order averaging vanishes, will be studied in this
chapter as well as its generalization to higher order. A special averaging algorithm
for the computation of higher order approximations of the fundamental matrix of
linear equations with periodic coefficients is given. As an application the existence
and stability of periodic solutions of an inhomogeneous second order equation with
time-dependent damping coefficient are studied.

2.1 Introduction

The averaging method is a well-known method for the construction of approxima-
tions for solutions of initial value problems for a class of non-linear differential equa-
tions, as well as for finding periodic solutions. Usually the respective algorithm is
concerned with first or second order approximations. Little attention has been paid
to problems where third and higher order approximations have to be considered.
Particularly for the construction of stability diagrams of linear equations with time
varying coefficients like equations of Hill’s type, these higher order approximations
are relevant. For the construction of third and higher order approximations we will
study two aspects in more detail: the existence of periodic solutions, in particu-
lar when from first and second order averaging no conclusions about existence of
periodic solutions can be drawn and the algorithm for the construction of the ap-
proximations. The well-known theorem on the existence of time periodic solutions
is based on the existence of critical points of the autonomous system obtained by

†This chapter is a revised version of [10] ,Higher Order Averaging : periodic solutions, linear
systems and an application, Nonlinear Analysis, 52:1327-1346, 2003.
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(first order) averaging. This theorem will be extended to the case that the system
obtained by (first order) averaging vanishes identically. The algorithm for higher
order averaging is straight forward: however because of the complexity little atten-
tion has been paid in applications. As is well-known the averaging method is of an
asymptotic nature the respective asymptotic series may not converge. The situation
for linear systems with time-varying coefficients is quite different. Consider a linear
system of the form:

ẋ = εA(t, ε)x, (2.1.1)

where A(t, ε) is T -periodic in t and ε a small parameter. The averaging algorithm
is concerned with the computation of the fundamental matrix Φ(t, ε) which can be
represented (Floquet) by:

Φ(t, ε) = P(t, ε)eB(ε)t, (2.1.2)

where P(t, ε) is a T -periodic matrix and B(ε) a constant matrix. The algorithm
implies the computation of approximations of P(t, ε) and B(ε) to any order of ε. In
the case that A(t, ε) is an analytic function in ε for |ε| < ε0 one may assume that,
as P(t, ε) and B(ε) are also analytic functions in ε on the same interval, the power
series for P(t, ε) and B(ε) obtained by the algorithm converge.

The organization of this chapter is as follows. In section 2 a theorem is discussed
on the existence and stability of periodic solutions by using second order averaging
when the vector field by first order averaging vanishes and a generalization of this
theorem to higher order is presented. The approximations of the fundamental matrix
of linear equations with periodic coefficients by using a special averaging algorithm
are given in the section 3. At the end of this chapter an example, taken from [9],
concerning the existence and stability of periodic solutions of an inhomogeneous
second order equation with time-dependent damping coefficient is given.

2.2 Existence and Stability of Periodic Solutions

The existence and stability of periodic solutions by using first order averaging, has
been studied extensively and can be found for instance in [20, 32]. In this section
the existence and stability of periodic solutions (by using the second order averaging
) in the case that the averaged vector field (to first order) vanishes, is investigated.
A theorem on the validity of approximations for initial value problems in the case
that the vector field by first order averaging vanishes is recalled.
Theorem 1.2.1
Consider the initial value problems :

{

ẋ = εf(t,x) + ε2g(t,x) + ε3R(t,x, ε),
x(0) = xo

(2.2.1)

with

fo(y) =
1

T

∫ T

0

f(s,y)ds ≡ 0
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and
{

u̇ = ε2fo1 (u) + ε2go(u),
u(0) = xo,

(2.2.2)

with f , g : [0,∞) ×D → R
n,R : [0,∞) ×D × (0, εo] → R

n, where D is a bounded
domain in R

n,

fo1 (y) =
1

T

∫ T

0

f1(s,y)ds, go(y) =
1

T

∫ T

0

g(s,y)ds,

f1(t,x) =
∂f(t,x)

∂x
u1(t,x) and u1(t,x) =

∫ t

0

f(s,x)ds.

Suppose

1. f , g and R are Lipschitz-continuous in x on D; f , g,R are continuous in t ;

2. f , g and R are T -periodic in t, R is bounded by a constant independent of ε
for x ∈ D;

3. u(t) belongs to an interior subset of D on the time scale 1
ε2

;

4. the vector fields f , g, R, ∂f/∂x, ∂2f/∂x2, ∂g/∂x, ∂R/∂x are defined continu-
ous and bounded by a constant M (independent of ε) in [0,∞)×D, 0 ≤ ε ≤ εo;

then

x(t) = u(t) +O(ε),

on the time scale 1
ε2

.
A proof of this theorem can be found in [25].
The following theorem is related to the above one and is concerned with the existence
of periodic solutions for the case that the vector field in first order averaging vanishes.
Theorem 1.2.2
Let f1 = fo1 + go then equation (2.2.2) can be written as

u̇ = ε2f1(u) (2.2.3)

Suppose po is a critical point of (2.2.3) and

|∂f1(u)/∂u|u=po
6= 0, (2.2.4)

then there exists a T -periodic solution ψ(t, ε) of equation (2.2.1) which is close to
po such that

lim
ε→0

ψ(t, ε) = po.

Further if f1 is continuously differentiable in u and the eigenvalues of the matrix
∂f1(po)/∂u all have negative real parts, the corresponding periodic solution ψ(t, ε) is
asymptotically stable for ε sufficiently small. If one of the eigenvalues has a positive
real part, ψ(t, ε) is unstable.
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A proof of this theorem is a slight modification of the proofs of theorem 11.5 and 11.6
in [32]. To prove this theorem we need the following proposition and the Lipschitz’s
continuity of f . As is well known the function f(t,x) with f : R

n+1 → R
n, |t−to| ≤ a,

x ∈ D ⊂ R
n; satisfies the Lipschitz condition with respect to x if in [to−a, to+a]×D

‖f(t,x1) − f(t,x2)‖ ≤ L‖x1 − x2‖,

with x1,x2 ∈ D and L a constant. Furthermore, L is called a Lipschitz constant.

Proposition. Suppose that the functions f and g are Lipschitz continuous in x and
α, β are real constants. Let f o be the average of f over t i.e. f o(x) = 1/T

∫ T

0
f(t,x)dt

where in the general case f o(x) is not identical zero and

U(t,x) =

∫ t

0

[f(s,x) − f o(x)]ds.

Then the functions αf + βg, f · g, and U(t,x) are Lipschitz continuous in x.

Proof of theorem 1.2.2. Consider the equation :

ẋ = εf(t,x) + ε2g(t,x) + ε3R(t,x, ε), (2.2.5)

f , g are T -periodic in t. Introduce a ”near-identity transformation”

x = z + εu1(t, z) + ε2u2(t, z). (2.2.6)

Substituting (2.2.6) into (2.2.5) considering f o(x) ≡ 0 and choosing u1 and u2 as
follows:

u1(t, z) =

∫ t

0

f(s, z)ds, u2(t, z) =

∫ t

0

[g(s, z) +
∂f

∂z
· u1 − f1]ds,

f1(z) =
1

T

∫ T

0

[g(s, z) +
∂f

∂z
· u1]ds,

one obtains the transformed equation ( up to order ε3 )

ż = ε2f1(z) + ε3R̄(t, z, ε), (2.2.7)

where

R̄(t, z, ε) = ∂f
∂z

· u2 + ∂g

∂z
· u1 − ∂u1

∂z
· f1+

G + R(t, z, 0) +O(ε),
(2.2.8)

in which G is a vector with the k-th component Gk as follows:

Gk =
1

2

n
∑

i=1

u2
1i

∂2fk
∂z2

i

+

n
∑

i6=j

u1iu1j
∂2fk
∂zi∂zj

,

u1i is i-th component of u1, fk is k-th component of f , and zi is i-th component of
z. The periodicity of f and g with respect to t implies the periodicity of u1,u2, and
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R̄.
Introduce an initial value z(0) = zo for equation (2.2.7). As an equivalent integral
equation one obtains:

z(t) = zo + ε2
∫ t

0

[f1(z) + εR̄]ds.

It may be clear that the solution of this equation depends on ε as well as on zo i.e.
z(t) = z(t, ε, zo).

Further, one can calculate z(t+ T ) as follows :

z(t+ T ) = zo + ε2
∫ t+T

0
[f1(z) + εR̄]ds

= zo + ε2
∫ T

0
[f1(z) + εR̄]ds+ ε2

∫ t+T

T
[f1(z) + εR̄]ds.

(2.2.9)

To have a time periodic solution for z(t) with period T one should have z(t) = z(t+T )
from which it follows that:

h(zo, ε) =

∫ T

0

[f1(z) + εR̄]ds = 0.

As z = z(t, zo, ε) one obtains for t = 0: z(0, zo, ε) = zo and when ε equals zero one
finds that z(t, zo, 0) = zo. So evidently h(po, 0) = 0, and

h(zo, 0) =
∫ T

0
f1(z(s, zo, 0))ds

=
∫ T

0
f1(zo)ds

= T f1(zo).

(2.2.10)

From (2.2.4) it follows that

|∂h(zo, 0)/∂zo|zo=po
6= 0. (2.2.11)

Finally according to the Implicit Function Theorem there exist a unique function
p : (−εo, εo) → R

n with p(0) = po and h(p(ε), ε) = 0 for ε ∈ (−εo, εo). So h(zo, ε) =
0 has unique solution zo(ε) and zo(ε) → po when ε → 0. Thus the transformed
equation (2.2.7) has a T -periodic solution with initial value zo(ε). Suppose the
solution is ψ1(zo(ε), t). As u1 and u2 are time periodic, the original equation (2.2.1)
has a T -periodic solution, that is

ψ(zo(ε), t) = ψ1 + εu1(t, ψ1) + ε2u2(t, ψ1), (2.2.12)

and satisfies ψ → po when ε → 0.

To study the stability of this periodic solution one can show that its stability
depends on the stability of the periodic solution of the transformed system. First,
set z = ψ1 + w. Differentiating this term and substituting into (2.2.7) gives :

ẇ + ψ̇1 = ε2f1(ψ1 + w) + ε3R̄(t, ψ1 + w, ε)

= ε2f1(ψ1) + ε2 ∂f
1(ψ1)
∂w

w+

ε3R̄(t, ψ1, ε) + ε3 ∂R̄(ψ1)
∂w

w +O(w2).

(2.2.13)
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As is known ψ1(t, ε) is a periodic solution of the transformed equation (2.2.7), so

ψ̇1 = ε2f1(ψ1) + ε3R̄(t, ψ1, ε), (2.2.14)

and it follows that

ẇ = ε2 ∂f
1(ψ1)
∂w

w + ε3 ∂R̄(ψ1)
∂w

w +O(w2)

= ε2 ∂f
1(po)
∂w

w + ε2[∂f
1(ψ1)
∂w

− ∂f1(po)
∂w

]w + ε3 ∂R̄(ψ1)
∂w

w +O(w2).

(2.2.15)

Assume that ∂f1

∂w
and ∂R̄

∂w
continuous, and define the continuous function K(t, ε) by:

K(t, ε) =
∂f1(ψ1)

∂w
− ∂f1(po)

∂w
.

As is known ψ1(t, ε) → po when ε → 0, so K(t, ε) → 0 when ε → 0. Secondly,
consider the linear part of equation (2.2.15)

˙̄w = ε2[
∂f1(po)

∂w̄
+ K(t, ε) + ε

∂R̄(ψ1)

∂w̄
]w̄. (2.2.16)

Suppose that αj, j = 1, 2, · · ·n are the eigenvalues of matrix ∂f1(po)
∂w

. Then the
characteristic exponents of equation (2.2.16) λj(ε), j = 1, 2, · · ·n can be considered
as single-valued continuous functions of ε with λj(0) = αj. So if Re(αj) < 0 (re-
spectively Re(αj) > 0 ) then there exists a positive εo such that Re(λj(ε)) < 0
(respectively Re(λj(ε)) > 0) for all |ε| ≤ εo. In other words, the sign of the real
part of the characteristic exponent is equal to the sign of the real parts of the eigen-

values of the matrix ∂f1(po)
∂w

for ε sufficiently small. We now apply theorem 7.2 in
[32] page 86, saying that if Re(λj) < 0 then the trivial solution w = 0 of equation
(2.2.15) is asymptotically stable. But the trivial solution w = 0 corresponds with
z = ψ1, so one can deduce that ψ1 is asymptotically stable. According to the Flo-
quet theorem, every fundamental matrix Φ(t, ε) of equation (2.2.16) can be written
as Φ(t, ε) = P(t, ε)eB(ε)t, and the eigenvalues of matrix B(ε) are the characteristic
exponents of equation (2.2.16). If one transforms the variable w to a new variable
v, according w = P(t, ε)v, then the equation (2.2.15) becomes:

v̇ = ε2B(ε)v +O(v2). (2.2.17)

Now theorem 7.3 in [32] page 88 can be applied, yielding that if at least one of the
Re(λj) is positive then the solution v = 0 of equation (2.2.17) is unstable. The
trivial solution v = 0 corresponds with the trivial solution w = 0, and the trivial
solution w = 0 corresponds with the solution z = ψ1. Thus in other words one can
conclude that ψ1 is unstable.

Now it will be shown that if ψ1 is a stable periodic solution of system (2.2.7)
then ψ is also a stable periodic solution of the original system (2.2.1). Suppose η(t)
is a solution of (2.2.1), then η(t) can be written as

η(t) = η1(t) + εu1(t, η1) + ε2u2(t, η1), (2.2.18)
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where η1(t) is some solution in (2.2.7).
According to the fourth assumption of the theorem and the proposition above it can
be concluded that u1 and u2 satisfy the Lipschitz condition. Thus from (2.2.12) and
(2.2.18) it follows that,

‖ψ(t) − η(t)‖ ≤ ‖ψ1(t) − η1(t)‖ + ε‖u1(t, ψ1) − u1(t, η1)‖+

ε2‖u2(t, ψ1) − u2(t, η1)‖

≤ N(ε)‖ψ1(t) − η1(t)‖.

(2.2.19)

Hence the stability of ψ follows from the stability of ψ1.
The result obtained above can be extended to more general cases. As has been

shown when the vector field f(t,x) vanishes by first order averaging one has to
consider second order averaging. In a similar way when higher order averaging, say
n-th order averaging yields the trivial vector field one has to consider (n + 1)-th
order averaging and has to determine critical points of the (n + 1)-th order non-
trivial vector field.
Consider the initial value problem for the system

ẋ = εf1(t,x) + · · · + εkfk(t,x) + εk+1f̂(t,x, ε), x(0) = xo, (2.2.20)

where f1, · · · , fk, f̂ are T -periodic in t. By substituting the ”near identity” transfor-
mation

x = y + εu1(t,y) + · · ·+ εkuk(t,y) (2.2.21)

into (2.2.20) one obtains the following transformed system :

ẏ = εg1(y) + · · · + εkgk(y) + εk+1ĝ(t,y, ε). (2.2.22)

By neglecting the last term of (2.2.22) one finds the averaged system :

ẇ = εg1(w) + · · ·+ εkgk(w). (2.2.23)

The term g1 in the averaged equation is the average of f1 in equation (2.2.20), the
term g2 depends not only on f2 but also on f1 and u1. The term g2 is the average
of f2 plus the average of the multiplication of the derivative of f1 with u1. The term
gj is the average of fj plus the average of some multiplication of fm with um where
m < j and their derivatives. The higher the index i of the term gi(w) the more
complicated this term becomes.
Theorem 1.2.3.
Assume that the vector field in (2.2.20) is smooth and periodic in t. Let K be
a compact subset of R

n and let W be a larger compact subset containing K in
its interior. Let εo be such that the near identity transformation (2.2.21) is valid
(invertible) for y in W and 0 ≤ ε < εo. Suppose that g1, · · · , gk−1 in the averaged
system (2.2.23) are identically zero. The solution of the

dz/dτ = gk(z), z(0) = xo, τ = εkt (2.2.24)
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remains in K in 0 ≤ τ ≤ C. Then there exist constants c and ε1 such that

‖x(t,xo, ε) − z(t,xo, ε)‖ < cε for 0 ≤ t ≤ C/εk, 0 < ε ≤ ε1, (2.2.25)

for all xo in K. Furthermore, if p is a critical point of

ż = εkgk(z) (2.2.26)

and

|∂gk(z)/∂z|z=p 6= 0, (2.2.27)

then there exist a periodic solution of (2.2.20) in the ε-neighbourhood of p. Besides
that if ∂ĝk+1(z)/∂z is continuous, then this periodic solution is asymptotically stable
if all of the eigenvalues of the matrix ∂gk(p)/∂z have negative real part and unstable
if there exist at least one eigenvalue of that matrix with positive real part.

Remarks. The first part of this theorem is generalization of Theorem 1.2.1,
resulting in approximations on longer time scales. For more general results on higher
order averaging one can consult [4], where, however, approximations are studied on
a 1/ε time scale. The second part of this theorem seems not to be known that is this
theorem gives conditions for the existence and the stability of periodic solution of
the original equation depending on a higher order term of which the determinant of
the matrix obtained by linearization in the neighbourhood of the critical point does
not vanish. To prove the first part of this theorem one can use the method used in
the proof of Theorem 1.2.1. The proof of the second part of Theorem 1.2.3 can be
given on the basis of the principles given in the proof of Theorem 1.2.2.

2.3 Higher Order Averaging for Linear Equations

In general solutions of systems of linear differential equation with time-periodic co-
efficients are not always periodic. The Floquet theorem shows that the fundamental
matrix of this system can be written as a product of a periodic matrix with an
exponential matrix. As is known there are no general methods to calculate this
fundamental matrix. In this section an example will be given how to approximate
solutions of systems of linear differential equations with time-periodic coefficients by
using higher order averaging.
Consider the equation

ẋ = (εA1(t) + ε2A2(t) · · ·+ εnAn(t))x, (2.3.1)

where Ai(t), i = 1, 2, · · · , n are T -periodic n × n-matrices in t and x is a column
vector. According to the Floquet theorem the fundamental matrix of equation (2.3.1)
can be written as follows :

P(t, ε)eB(ε)t, (2.3.2)

where P(t, ε) is a n× n-matrix, T -periodic in t and B(ε) is a n× n constant matrix
depending on ε. As the right hand side of equation (2.3.1) is linear, the ”near
identity” transformation can be chosen in linear form as follows:

x = (I + εV1(t) + ε2V2(t) + · · · + εnVn(t))y. (2.3.3)
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By substitution of (2.3.3) into (2.3.1) one obtains the transformed system

ẏ = F−1(AF − Ḟ)y, (2.3.4)

where A, F and F−1 are

A = εA1(t) + ε2A2(t) + · · ·+ εnAn(t),

F = I + εV1(t) + ε2V2(t) + · · ·+ εnVn(t),

F−1 = I +
∑∞

j=1(−1)j [
∑n

i=1 ε
iVi(t)]

j
.

(2.3.5)

If one chooses :

V1(t) =

∫ t

0

[A1(s) − A(0)]ds, A(0) =
1

T

∫ T

0

A1(t)dt,

V2(t) =

∫ t

0

[A1(s)V1(s) + A2(s) − V1(s)A
(0) − A(1)]ds,

A(1) =
1

T

∫ T

0

[A1(t)V1(t) + A2(t) − V1(t)A
(0)]dt,

...

Vn(t) =

∫ t

0

n−1
∑

j=0

i+j=n

Ai(s)Vj(s) −
n−1
∑

j=0

Vj(s)A
(n−j−1)ds,

V0 = I,

A(n−1) =
1

T

∫ T

0

n−1
∑

j=0

i+j=n

Ai(t)Vj(t) −
n−1
∑

j=1

Vj(t)A
(n−j−1)dt,

then one obtains the transformed equation (2.3.4) up to order εn+1 :

ẏ = (εA(0) + ε2A(1) + · · ·+ εnA(n−1))y +O(εn+1) (2.3.6)

=

(

n−1
∑

j=0

εj+1A(j)

)

y +O(εn+1).

Truncating the order εn+1 terms yields the averaged equation

ż =

(

n−1
∑

j=0

εj+1A(j)

)

z (2.3.7)

and its solution (with initial condition xo) is

z = exp

(

[

n−1
∑

j=0

εj+1A(j)] t

)

xo. (2.3.8)
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By substituting (2.3.8) into (2.3.3) the solution of equation (2.3.1) with initial con-
dition xo can be approximated by xapp i.e. :

xapp = z +

(

n
∑

i=1

εiVi(t)

)

z (2.3.9)

= [I +

(

n
∑

i=1

εiVi(t)

)

] exp

(

[

n−1
∑

j=0

εj+1A(j)] t

)

xo.

In other words, the fundamental matrix of (2.3.1), P(t, ε)eB(ε)t, can be approximated
by

[I +

(

n
∑

i=0

εiVi(t)

)

] exp

(

[

n−1
∑

j=0

εj+1A(j)] t

)

.

Now it follows that if (2.3.1) and (2.3.7) have the same initial value then ‖x−xapp‖ =
O(εn) on a time scale 1/ε. This result is a special case of the n-th order averaging
as given in [4], where the system

ẋ = εf(t,x, ε) (2.3.10)

is considered. As this system is non-linear the near-identity transformation as well
as the resulting n-th order averaged system are much more complicated. As will
be shown in the following section the algorithm for linear systems as presented in
this section can be applied straightforwardly to special examples yielding interesting
results.

2.4 Application

In this section the theory of the previous sections is illustrated with an example. A
special equation is studied by first and higher order averaging. It will be shown that
higher order averaging is essential for obtaining interesting results. The periodic
solutions of an inhomogeneous second order equation with time-dependent damping
coefficient:

ẍ + (c+ ε cos(2t))ẋ+ (m2 + α)x+ A cos(ωt) = 0 (2.4.1)

are studied, where c, α, ε, A are small parameters andm,ω positive integers. A rather
special property of equation (2.4.1) is that the coefficient of ẋ is time dependent and
it seems that only little attention has been paid in the literature to an equation of
type (2.4.1). For m = 1 and A = 0 some results especially related to the stability of
the trivial solution can be found in [2]. As will be shown in chapter 3 the equation
(2.4.1) may be used as a model equation for the study of rain-wind induced vibra-
tions of a special oscillator. In a more general context the homogeneous equation
(2.4.1) may be considered as a variational equation for a corresponding non-linear
equation with a periodic solution. The study of periodic solutions of equation (2.4.1)
involves the existence of the periodic solutions as well as the construction of approxi-
mations. Also the stability of these periodic solutions will be studied. Because of the
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presence of a number of small parameters in equation (2.4.1) the averaging method
for the construction of approximations for the periodic solutions will be used. The
parameters c, α and A are considered to be small implying that they are expressed
in the characteristic small parameter ε of the problem:

c = εc1 + ε2c2 + ε3c3,
α = εα1 + ε2α2 + ε3α3,
A = εA1 + ε2A2 + ε3A3,

(2.4.2)

where ci, αi and Ai, i = 1, 2, 3 are of O(1). Note that throughout the analysis the
parametric excitation ε cos 2t remains of O(ε).
For m,ω ∈ {1, 2, 3}, it will be shown that an O(1)-periodic solution exists if m = ω
and if m 6= ω the periodic solution is of order ε. Further, if c = O(ε), α = O(ε), and
A = O(ε), for m = ω = 1 both stable and unstable periodic solutions exist but for
m = ω = 2, 3 only stable periodic solutions are found. For the case that c = O(ε2),
α = O(ε2), and A = O(ε2), for m = ω = 2, 3 only stable periodic solutions are
found. But for m = 3 and α = 9

64
ε2 + O(ε3), c = O(ε3), A = O(ε3) both stable and

unstable periodic solutions exist. The stability of the periodic solutions follows from
stability diagrams related to equation (2.4.1) with A ≡ 0. According to the Floquet
theorem the homogeneous equation has unbounded solutions when c is negative, so
in this section we only consider the cases c = 0 and c positive.

2.4.1 THE CASE m = ω

Application of the averaging method: first order approximation

For the cases c, α, A are O(ε), the averaging method can be used to analyze the
stability diagram of equation (2.4.1). To obtain the standard form for the application
of the averaging method one can put

c = c1ε, α = α1ε, A = A1ε, (2.4.3)

and transform x and ẋ to the new variables y1 and y2 by:

x = y1 cos(mt) + 1
m
y2 sin(mt),

ẋ = −my1 sin(mt) + y2 cos(mt).
(2.4.4)

The standard form is:




ẏ1

ẏ2



 = ε





a11(t) a12(t)

a21(t) a22(t)









y1

y2



+ ε





A1

m
sin(mt) cos(ωt)

−A1 cos(mt) cos(ωt)



 ,(2.4.5)

where

a11(t) = − sin2(mt)(c1 + cos(2t)) + α1

2m
sin(2mt),

a12(t) = 1
2m

sin(2mt)(c1 + cos(2t)) + α1

m2 sin2(mt),

a21(t) = m
2

sin(2mt)(c1 + cos(2t)) − α1 cos2(mt),

a22(t) = − cos2(mt)(c1 + cos(2t)) − α1

2m
sin(2mt).
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* The first order averaged equation and its critical points

m=1 ż = ε





1
4
− 1

2
c1

1
2
α1

−1
2
α1 −1

4
− 1

2
c1



 z + ε





0

−1
2
A1



,

(

−α1A1

α2
1
+c2

1
− 1

4

,
( 1

2
−c1)A1

α2
1
+c2

1
− 1

4

)

m=2 ż = ε





−1
2
c1

1
8
α1

−1
2
α1 −1

2
c1



 z + ε





0

−1
2
A1



,

(
− 1

4
A1α1

c2
1
+ 1

4
α2

1

, −A1c1
c2
1
+ 1

4
α2

1

)

m=3 ż = ε





−1
2
c1

1
9
α1

−1
2
α1 −1

2
c1



 z + ε





0

−1
2
A1



 ,

(

−2α1A1

2α2
1
+9c2

1

, −9A1c1
2α2

1
+9c2

1

)

Table 2.1: The first order averaged equation for (2.4.1) and its critical points for the case
m = ω, z is a 2 × 1 column vector.

For m = 1, 2, and 3 the averaged equation of (2.4.5) and its critical points are
presented in Table 2.1.

The critical points of the averaged equation in table 2.1 correspond with an O(1)
time periodic solution of equation (2.4.5). The stability of these solutions follows
from the eigenvalues of the coefficient matrix as can easily be verified. For m = 1
and given c positive, after rescaling the parameters, the eigenvalues of the coefficient
matrix become:

λ1,2 =
1

ε

(

− c
2
± 1

2

√

1

4
ε2 − α2

)

.

According to the character of the eigenvalues the α − ε plane can be divided into

two regions (see Figure 2.1b ) by the curves α = ±
√

1
4
ε2 − c2. On this curve the

determinant of the coefficient matrix is equal to zero, implying that the averaged
equation does not have an isolated critical point. In region I the real part of the
eigenvalues are negative, thus in this region the periodic solutions are stable. In the
region II the periodic solutions are unstable because in this region the eigenvalues
are real-valued, one positive and one negative.
In case c = 0 the α− ε plane divided into two regions (see Figure 2.1a) by the lines
α = ±1

2
ε. In the region II the periodic solutions are unstable because the eigenvalues
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0

ε

α

II

II

α

0

2c
I

II

ε

II

2.1a. c = 0 2.1b. c > 0

Figure 2.1: Stability diagrams for the periodic solutions of equation (2.4.1) for m = ω =
1. In the shaded regions the periodic solutions are unstable.

are real-valued, one positive and one negative. In region I the eigenvalues are purely
imaginary.
For m = 2 and m = 3, and given c positive the determinant of the coefficient matrix
is not equal to zero. In these cases there exists one critical point and the eigenvalues
of the coefficient matrix are complex-valued with negative real part implying that
equation (2.4.1) has always stable periodic solutions.

Application of the averaging method to second order

By applying first order averaging for m = 2 and m = 3 one finds a critical point and
hence a periodic solution depending on the parameters c1 (damping), α1 (detuning)
and A1 (forcing). In the α− ε plane one does not find a stability diagram similar to
the ones in Figure 2.1. i.e. for c1 > 0 the critical point is locally but also globally
stable. Higher order averaging will not affect this qualitative picture because of the
dominant O(ε) terms involving damping (c1 > 0) in the averaged equations. By
reducing the order of magnitude of the damping and forcing as well as the detuning
up to O(ε2) but keeping the parametric excitation at O(ε) one may find a region of
instability. This can be achieved by considering the expansion

c = εc1 + ε2c2 + ε3c3 + · · · ,
α = εα1 + ε2α2 + ε3α3 + · · · ,
A = εA1 + ε2A2 + ε3A3 + · · ·

(2.4.6)

and setting c1 = α1 = A1 = 0. As the second order averaging are applied, one can
truncate the expansion :

c = ε2c2, α = ε2α2, A = ε2A2. (2.4.7)
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For m = 2, substitution of (2.4.7) and (2.4.4) into (2.4.1) yields after second order
averaging :

ż = ε2





−1
2
c2

1
8
(α2 − 1

6
)

−1
2
(α2 − 1

6
) −1

2
c2



 z + ε2





0

−1
2
A2



 . (2.4.8)

The critical point of (2.4.8) is

(
− 1

16
A2(α2 − 1

6
)

1
4
c22 + 1

16
(α2 − 1

6
)2

,
−1

4
A2c2

1
4
c22 + 1

16
(α2 − 1

6
)2

).

The determinant of the coefficient matrix in (2.4.8) is |B2| = 1
4
c22 + 1

16
(α2 − 1

6
)2 and

its eigenvalues are :

λ1,2 = −c2
2
± 1

2

√

− 1

16
(α2 −

1

6
)2.

By rescaling the parameters, the determinant and the eigenvalues become 1
ε4

(1
4
c2 +

1
16

(α− 1
6
ε2)2) and

λ1,2 =
1

ε2

(

− c
2
± 1

2

√

− 1

16
(α− 1

6
ε2)2

)

,

respectively.
For given c2 positive, |B2| is never zero and its eigenvalues are complex-valued with
negative real part for α2 6= 1

6
. Thus (2.4.1) has stable periodic solutions.

But for the case c2 = 0 the eigenvalues are purely imaginary and equal zero when
α2 = 1

6
. In this case the α − ε plane can be divided in two regions separated by

the curve α = 1
6
ε2. On this curve the averaged equation does not have a critical

point (see Figure 2.2a) implying that no periodic solutions are found in second order
approximation.

In a similar way for m = 3, by using second order averaging one obtains :

ż = ε2





−1
2
c2

1
18

(α2 − 9
64

)

−1
2
(α2 − 9

64
) −1

2
c2



 z + ε2





0

−1
2
A2



 . (2.4.9)

The critical point of (2.4.9) is

( − 1
36
A2(α2 − 9

64
)

1
4
c22 + 1

36
(α2 − 9

64
)2

,
−1

4
c2A2

1
4
c22 + 1

36
(α2 − 9

64
)2

)

.

The determinant of the coefficient matrix of (2.4.9) is 1
4
c22 + 1

36
(α2 − 9

64
)2 and its

eigenvalues are :

λ1,2 = −c2
2
± 1

2

√

−1

9
(α2 −

9

64
)2.
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0

α

ε α= 1/6  ε 2

0

α

ε α=9/64  ε 2

2.2a. m = ω = 2 2.2b. m = ω = 3

Figure 2.2: Curves on which the eigenvalues of (2.4.8) and (2.4.9) are zero and on both
sides of the curves the eigenvalues are purely imaginary.

By rescaling the parameters, the eigenvalues and the determinant become 1
ε4

(1
4
c2 +

1
36

(α− 9
64
ε2)2) and

λ1,2 =
1

ε2

(

− c
2
± 1

2

√

−1

9
(α− 9

64
ε2)2

)

,

respectively.
The situation for m = 3 is qualitatively the same as the situation for m = 2. The
curve on which the equation (2.4.9) does not have a critical point is, however, slightly
different i.e. α = 9

64
ε2 (see Figure 2.2b ).

Application of the averaging method to third order

In this subsection the case m = 2, 3 by using third order averaging are investigated.
When the averaging method to second order is used to investigate the cases m = 2
and m = 3, two curves are obtained in the α − ε plane that are α = 1

6
ε2 and

α = 9
64
ε2 respectively, on which curves the averaged equation does not have critical

points. However, for m = 3 one can obtain an interesting result when one reduces
the order of magnitude of the parameters c (damping) and A (forcing) up to O(ε3)
i.e. c = ε3c3, A = ε3A3. It turns out that for the detuning one should consider
α = 9

64
ε2 + ε3α3. As will be shown the curve α = 9

64
ε2 will split in two curves

α = 9
64
ε2± 3

512
ε3 for c = 0, defining a domain of instability which has not been found

by second order averaging and scaling of the parameters.

In case m = 2, to eliminate the order ε and ε2 effects one sets c1 = α1 = c2 =
A1 = A2 = 0 and α2 = 1

6
. Thus the expansions in the series (2.4.6) up to order ε3

are :

c = ε3c3, α =
1

6
ε2 + ε3α3, A = ε3A3. (2.4.10)
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By substituting (2.4.10) and (2.4.4) into (2.4.1) one obtains after third order aver-
aging :

ż = ε3





−1
2
c3

1
8
α3

−1
2
α3 −1

2
c3



 z + ε3





0

−1
2
A3



 . (2.4.11)

The equation (2.4.11) does not have a critical point if and only if c3 = α3 = 0. Thus
for m = 2 the curve on which the equation (2.4.11) does not have a critical point
is α = 1

6
ε2 (the same result was obtained by using the averaging method to second

order).
In order to eliminate order ε and ε2 effects in case m = 3 one sets c1 = α1 = c2 =
A1 = A2 = 0 and α2 = 9

64
. Thus the expansions in the series (2.4.6) up to order ε3

are :

c = ε3c3, α =
9

64
ε2 + ε3α3, A = ε3A3. (2.4.12)

By substituting (2.4.12) and (2.4.4) into (2.4.1) one obtains after third order aver-
aging :

ż = ε3





−1
2
c3 + 1

1024
1
18
α3

−1
2
α3 −1

2
c3 − 1

1024



 z + ε3





0

−1
2
A3



 . (2.4.13)

After rescaling the parameters the determinant of the coefficient matrix B3 of equa-
tion (2.4.13) becomes :

|B3| =
1

36
(α− 9

64
ε2)2 − 1

4
(
ε6

5122
− c2),

and its eigenvalues are

λ1,2 =
1

ε3

(

− c
2
± 1

2

√

ε6

5122
− 1

9
(α− 9

64
ε2)2

)

.

The existence of an isolated critical point of equation (2.4.13) corresponds with
the existence of a periodic solution of equation (2.4.1), and the stability of this
periodic solution depends on the eigenvalues of matrix B3. Equation (2.4.13) has
an isolated critical point if |B3| 6= 0, and does not have a critical point if |B3| = 0.
In the α− ε plane, |B3| = 0 corresponds with the curve :

α =
9

64
ε2 ± 3

512

√

ε6 − (512c)2. (2.4.14)

Given c positive, this curve divides the α− ε plane into two regions, that are region
I and II (see Figure 2.3b ). In region I the real part of the eigenvalues are negative ,
and in the region II the eigenvalues are real-valued, one positive and one negative.
So the periodic solution of (2.4.1) is stable in region I but unstable in region II.
In the case c = 0, the α − ε plane is divided into two regions by the curves α =
9
64
ε2 ± 3

512
ε3 ( see Figure 2.3a ).
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0

α

ε

I
I

II

0

α

ε

I

II

2.3a. c = 0 2.3b. c > 0

Figure 2.3: Stability diagrams for the periodic solutions of equation (2.4.1) for m = ω =
3. In the shaded regions the periodic solutions are unstable.

2.4.2 THE CASE m 6= ω

In case m = ω, the general form of the averaged equation can be written as ż =
Cz+b, where b is 2×1 column vector which depends on the parameter A. However,
for the case m 6= ω the parameter A does not occur in the averaged equation, and
the general form of the averaged equation is ż = Cz. Thus the only isolated critical
point of this system is the origin. This implies that the periodic solution of (2.4.5)
is in an ε-neighbourhood of the origin. In other words the amplitude of the periodic
solution of equation (2.4.1) is of order ε. The stability diagrams in Figure 2.1 - Figure
2.3 depend on the coefficient matrix C, and on the curves, which separates region I
and II, the determinant of the coefficient matrix C is equal to zero. Because in both
cases the same coefficient matrix is obtained the stability diagram also applies to
the stability of the periodic solution of the inhomogeneous equation. The difference
is only the order of magnitude of the amplitude of the periodic solution; in case
m = ω the amplitude is O(1) but in case m 6= ω the amplitude is O(ε).

2.5 Conclusion

In this chapter the averaging method is studied for the case that all terms up to
O(εn) obtained by averaging vanish identically. When the first non identical zero
term is of O(εn+1) the validity of asymptotic approximations for the initial value
problems on a 1/εn+1 time scale is established as well as conditions are given for
the existence of time-periodic solutions. Moreover, the stability of these periodic
solutions is investigated.
A special averaging algorithm is presented for time-periodic linear systems. The
theory is illustrated with an example which clearly shows that for a relatively simple
equation third order averaging is needed to prove existence of periodic solutions, to
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establish their stability and to compute approximations.



Chapter 3

An Equation with a Time-periodic

Damping Coefficient: stability

diagram and an application †

Abstract. In this chapter the second order differential equation with a time-
dependent damping coefficient will be studied. In particular the coexistence of
periodic solutions corresponding with the vanishing of domains of instability is in-
vestigated. This equation can be considered as a model equation for the study of
rain-wind induced vibrations of a special oscillator.

3.1 Introduction

In this chapter we consider an inhomogeneous second order differential equation
with time-dependent damping coefficient i.e.

ẍ+ (c+ ε cos(2t))ẋ+ (m2 + α)x+ A cos(ωt) = 0, (3.1.1)

where c, α, ε, A are small parameters and m,ω positive integers. A rather special
property of equation (3.1.1) is that the coefficient of ẋ is time dependent. For m = 1
and A = 0 some results especially related to the stability of the trivial solution can
be found in [2]. Further for the case c = 0 and A = 0 the equation (3.1.1) is a special
case of Ince’s equation (see [16], page 92 i.e. a = 0, d = 0 and t → t + π/4). As is
known, Ince’s equation displays the phenomenon of coexistence of periodic solutions
when m is an even integer. The coexistence of periodic solutions means that there
are two linearly independent periodic solutions with the same period. Coexistence
implies that domains of instability disappear or in other words that an instability

†This chapter is a revised and combined version of [11] and [29], A linear differential equation
with a time-periodic damping coefficient: stability diagram and an application, to be published
in Journal of Engineering Mathematics, 49(2):99-112, 2004 and Rain-wind induced vibrations of a
simple oscillator, International Journal of Non-Linear Mechanics, 39:93-100, 2004.



22 CHAPTER 3. TIME-PERIODIC DAMPING

gap closes. The coexistence of periodic solutions of this equation will be studied in
this chapter. A stability diagram is presented and the strained parameter is used to
obtain approximations for the transition and the coexistence curves for small values
of ε. Finally it is shown that (3.1.1) can be used as a model equation for the study
of rain-wind induced vibrations of a special oscillator.

3.2 Coexistence of Time Periodic Solutions and

the Stability Diagram

For the case c = A = 0 and replacing m2 + α by λ, the equation (3.1.1) can be
written as

ẍ + ε cos(2t)ẋ+ λx = 0. (3.2.1)

Transform x to the new variable y by

x = y · e− 1

2

R t

0
ε cos(2s)ds (3.2.2)

to obtain a new equation of Hill’s type:

ÿ + (λ− 1

8
ε2 + ε sin(2t) − 1

8
ε2 cos(4t))y = 0. (3.2.3)

The standard form of Hill’s equation (in [16]) is

ÿ + [λ+Q(t)]y = 0, (3.2.4)

where λ is a parameter and Q is a real π-periodic function in t. Apparently (3.2.3) is
of type (3.2.4) where Q(t) depends additionally on a parameter ε. The determination
of the value of λ for which the equation (3.2.4) has a π or 2π periodic solution can
be related to the following theorem.
Theorem ([16] , page 11).
To every differential equation (3.2.4), there belong two monotonically increasing
infinite sequences of real numbers λo, λ1, λ2, · · · and λ′1, λ

′
2, λ

′
3, · · · such that (3.2.4)

has a solution of period π if and only if λ = λn, n = 0, 1, 2, · · · and a solution of
period 2π if and only if λ = λ′

n, n = 1, 2, 3, · · ·. The λn and λ′n satisfy the inequalities

λo < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 ≤ λ′4 < λ3 ≤ λ4 < · · ·

and the relations

lim
n→∞

λ−1
n = 0, lim

n→∞
(λ′n)

−1 = 0.

The solutions of (3.2.4) are stable ( that is, all solutions of (3.2.4) are bounded) in
the open intervals

(λo, λ
′
1), (λ

′
2, λ1), (λ2, λ

′
3), (λ

′
4, λ3), · · · .

At the endpoints of these intervals the solutions of (3.2.4) are, in general, unsta-
ble. The solutions of (3.2.4) are stable for λ = λ2n+1 or λ = λ2n+2 if and only
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if λ2n+1 = λ2n+2, and they are stable for λ = λ′
2n+1 or λ = λ′2n+2 if and only if

λ′2n+1 = λ′2n+2.

As described in [16], Hill’s equation in general has only one periodic solution
of period π or 2π. If the Hill’s equation has two linearly independent periodic
solutions of period π or two linearly independent periodic solutions of period 2π, we
say that two such solutions coexist . And then every solution of this equation can be
expressed into a linear combination of two these periodic solutions. The occurrence
of coexisting periodic solutions is equivalent with the disappearance of intervals of
instability. If for instance two linearly independent solutions of period π exist then
the interval of instability (λ2n+1, λ2n+2) disappears, because λ2n+1 = λ2n+2.
Further in [14] a special case of Q(t) was studied, that is, if Q(t) in equation (3.2.4)
has the form

Q(t) = γ + Ṗ (t) + P 2(t), (3.2.5)

where P (t) is π/2-anti-periodic i.e. P (t+ π/2) = −P (t) then λ2n+1 = λ2n+2 for all
n.
Clearly equation (3.2.3) is of the form (3.2.5) with P (t) = − 1

2
ε cos(2t) and γ = 0,

and cos(2t) is π/2 anti-periodic. Thus coexistence in equation (3.2.3) exists for
λ = λ2n+1 = λ2n+2.

Unfortunately it is not known how to calculate exactly the values of λ for which
equation (3.2.3) has a periodic solution. However, one can approximate the value of
λ by the following method [5].
We consider a Fourier series representation of the periodic solution:

y =
ao
2

+

∞
∑

n=1

(an cos(nt) + bn sin(nt)). (3.2.6)

Substituting (3.2.6) into (3.2.3) yields

(λ− 1
8
ε2)ao

2
+ εao

2
sin(2t) − 1

16
ε2ao cos(4t)+

∑∞

n=1[(λ− 1
8
ε2 − n2)an cos(nt)+

(λ− 1
8
ε2 − n2)bn sin(nt)]+

1
2
ε
∑∞

n=1[an sin((n + 2)t) − an sin((n− 2)t)

−bn cos((n+ 2)t) + bn cos((n− 2)t)]

− 1
16
ε2
∑∞

n=1[an cos((n + 4)t) + an cos((n− 4)t)+

bn sin((n+ 4)t) + bn sin((n− 4)t)] = 0.

(3.2.7)

Equating the coefficients of sine and cosine terms to zero we have a system of in-
finitely many equations for an and bn. This system can be split up into two indepen-
dent systems which contain even indices and odd indices respectively as has been
shown explicitly in the appendix. In this way we obtain two systems

A(λ, ε)v = 0, and B(λ, ε)w = 0,
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24

λ

ε

λ

ε

0 1 4 16 20

24

9

3.1a. 3.1b.

Figure 3.1: In the shaded regions the trivial solution is unstable. On the curves sepa-
rating the white and shaded regions periodic solution exist. Figure 3.1a the
Mathieu stability diagram. Figure 3.1b the new stability diagram.

where A(λ, ε),B(λ, ε) are square matrices of infinite dimension, and where v and
w are infinite column vectors. The matrices A and B and the vectors v and w are
also given in the appendix. The system B(λ, ε)w = 0 is related to the π-periodic
solution(s) when y is expanded as

y =
âo
2

+
∞
∑

n=1

(ân cos(2nt) + b̂n sin(2nt)).

The other system, A(λ, ε)v = 0, corresponds with the 2π-periodic solution(s). To
have a non trivial solution the determinant of A or B must be equal zero. These
determinants define the curves in the ε− λ plane on which periodic solutions exist.
However, it is not possible to compute these curves exactly from the determinants as
they are of infinite dimension. Hence we consider (3.2.6) and truncate the series up
to 16 modes from which the determinants of finite dimension follow. Some remarks
on the truncation errors are also given in the appendix. In these determinants we
choose ε in the interval (0, 24) arbitrary but fixed. Subsequently the determinants
are evaluated, yielding an algebraic equation for λ which can be solved numerically.
Along this way a stability diagram as depicted in Figure 3.1b is obtained. In a
similar way the famous stability diagram of the Mathieu equation:

ÿ + (λ+ ε cos(2t))y = 0 (3.2.8)

is obtained and presented in Figure 3.1a. One can observe remarkable differences
between the two diagrams. Especially the curves starting in λ = 4n2, n = 1, 2, 3, · · ·
on which two periodic solutions coexists are of interest.
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In case ε is small we can use the strained parameter method ,as described in [22],
to approximate the value of λ for which the equation (3.2.3) has periodic solutions.
In this method we assume that λ can be expanded as

m2 + εα1 + ε2α2 + ε3α3 + · · · , (3.2.9)

where m is an integer number and the solution of (3.2.3) is expanded as

ao cosmt + bo sinmt + εy1(t) + ε2y2(t) + ε3y3(t) + · · · . (3.2.10)

Substituting (3.2.10) into (3.2.3) and eliminating the secular terms gives the values
of αi, i = 1, 2, 3, · · ·. For instance, for m = 1 we obtain ao = −bo and λ = λ′1 where

λ′1 = 1 − 1
2
ε + 3

32
ε2 − 3

512
ε3 − 3

8192
ε4 + 5

141072
ε5

− 17
4194304

ε6 − 7
134217728

ε7 − 1
16777216

ε8 +O(ε9)
(3.2.11)

or ao = bo and λ = λ′2 where

λ′2 = 1 + 1
2
ε+ 3

32
ε2 + 3

512
ε3 − 3

8192
ε4 − 5

141072
ε5+

17
4194304

ε6 + 7
134217728

ε7 − 1
16777216

ε8 +O(ε9).
(3.2.12)

But for m = 2, we obtain bo = 0 and λ = λ1 or ao = 0 and λ = λ2 where λ1 = λ2 i.e
:

λ1 = λ2 = 4 + 1
6
ε2 − 1

3456
ε4 − 1

1244160
ε6 + 11

5733089280
ε8 +O(ε9). (3.2.13)

The case m = 3 is similar with m = 1, that is, one obtains ao = bo and λ = λ′3 where

λ′3 = 9 + 9
64
ε2 − 3

512
ε3 + 9

65536
ε4 + 15

524288
ε5

− 141
33554432

ε6 − 21
536870912

ε7 + 4101
68719476736

ε8 +O(ε9)
(3.2.14)

or ao = −bo and λ = λ′4 where

λ′4 = 9 + 9
64
ε2 + 3

512
ε3 + 9

65536
ε4 − 15

524288
ε5

− 141
33554432

ε6 + 21
536870912

ε7 + 4101
68719476736

ε8 +O(ε9).
(3.2.15)

The case m = 4 is similar with m = 2. We obtain bo = 0 and λ = λ3 or ao = 0 and
λ = λ4 with λ3 = λ4 i. e.

λ3 = λ4 = 16 + 2
15
ε2 + 11

108000
ε4 + 1033

1360800000
ε6

− 60703
31352832000000

ε8 +O(ε9).
(3.2.16)

The approximations of λ′
1 and λ′2 are given by (3.2.11) and (3.2.12) respectively.

The approximation of λ1 and λ2 are the same and are given by (3.2.13). The
expansions of λ′

3 and λ′4 are given by (3.2.14) and (3.2.15) respectively, and finally
the approximations of λ3 and λ4 are given by (3.2.16).
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Numerical Analytical

λ′1 = 0.587566498 0.587555692
λ′2 = 1.599209067 1.599211767

λ1 = 4.166376513 4.166376513

λ′3 = 9.134927378 9.134927383
λ′4 = 9.146588994 9.146588991

λ3 = 16.13343594 16.13343594

Table 3.1: Comparison of the values of λ in equation (3.2.3) obtained with the numerical
method and the perturbation method for ε = 1. For this value (of λ) equation
(3.2.3) has periodic solution.

The analytical results as obtained above are compared with the numerical results
as presented in Figure 3.1b, for ε = 1 in Table 3.1 . One can observe a striking
resemblance.

The occurrence of the coexistence of periodic solutions in equation (3.2.3) de-
pends on the periodicity of the coefficient of the damping term. As is known in [14]
coexistence occurs when the coefficient of the damping term is π/2-anti periodic.
So, if one perturbs the period then the coexistence does not occur anymore as is
shown in the following example.
Consider the equation

ẍ + (ε cos(2t) + εb cos t)ẋ + λx = 0. (3.2.17)

The period of the coefficient of the damping term is 2π if b is not equal to zero, thus
if one transform equation (3.2.17) into Hill’s type then this equation does not satisfy
(3.2.5) i.e. P (t+ π/2) 6= −P (t) where P (t) = − 1

2
(ε cos 2t+ εb cos t). So coexistence

may not occur anymore, and the approximation of λ′
1, λ

′
2, λ1, λ2, λ

′
3, λ

′
4, λ3 and λ4

(up to order O(ε9)) are given by

λ′1 = 1 − 1
2
ε+ ( 3

32
+ 1

6
b2)ε2 − ( 3

512
+ 1

36
b2)ε3 − ( 3

8192
+ 7

576
b2 + 1

864
b4)ε4

+( 5
131072

+ 11
3072

b2 + 47
13824

b4)ε5

+( 17
4194304

− 39
573440

b2 − 653
4976640

b4 − 1
77760

b6)ε6

−( 7
134217728

+ 187403
2890137600

b2 + 430961
1194393600

b4 + 3877
18662400

b6)ε7

+(− 1
16777216

+ 6431
2055208960

b2 + 1259837
17836277760

b4

+ 10421
627056640

b6 + 11
89579520

b8)ε8 +O(ε9),

(3.2.18)
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λ′2 = 1 + 1
2
ε+ ( 3

32
+ 1

6
b2)ε2 + ( 3

512
+ 1

36
b2)ε3 − ( 3

8192
+ 7

576
b2 + 1

864
b4)ε4

+( 5
131072

+ 11
3072

b2 + 47
13824

b4)ε5

+( 17
4194304

− 39
573440

b2 − 653
4976640

b4 − 1
77760

b6)ε6

−( 7
134217728

+ 187403
2890137600

b2 + 430961
1194393600

b4 + 3877
18662400

b6)ε7

+(− 1
16777216

+ 6431
2055208960

b2 + 1259837
17836277760

b4 + 10421
627056640

b6

+ 11
89579520

b8)ε8 +O(ε9),

(3.2.19)

λ1 = 4 + (1
6

+ 2
15
b2)ε2 − 1

36
b2ε3 + (− 1

3456
+ 1

180
b2 + 11

27000
b4)ε4

+(− 37
64800

b2 − 1
1350

b4)ε5

−( 1
1244160

+ 79
6531840

b2 + 6397
108864000

b4 + 1033
85050000

b6)ε6

+( 1739
232243200

b2 + 7639
51030000

b4 + 409
58320000

b6)ε7

+( 11
5733089280

− 67
470292480

b2 − 19979
261273600

b4 − 864931
48988800000

b6

− 60703
489888000000

b8)ε8 +O(ε9),

(3.2.20)

λ2 = 4 + (1
6

+ 2
15
b2)ε2 + 1

36
b2ε3 + (− 1

3456
+ 1

180
b2 + 11

27000
b4)ε4

+(− 37
64800

b2 − 1
1350

b4)ε5

−( 1
1244160

+ 79
6531840

b2 + 6397
108864000

b4 − 1033
85050000

b6)ε6

−( 1739
232243200

b2 + 7639
51030000

b4 + 409
58320000

b6)ε7

+( 11
5733089280

− 67
470292480

b2 − 19979
261273600

b4 − 864931
48988800000

b6

− 60703
489888000000

b8)ε8 +O(ε9),

(3.2.21)

λ′3 = 9 + ( 9
64

+ 9
70
b2)ε2 − 3

512
ε3 + ( 9

65536
+ 9

4480
b2 + 279

1372000
b4)ε4

+( 15
524288

− 1311
1254400

b2 − 3
12800

b4)ε5

+(− 141
33554432

+ 3207
50462720

b2 + 17789
351232000

b4 + 5953
10084200000

b6)ε6

+(− 21
536870912

+ 19287
1284505600

b2 − 20945241
786759680000

b4 − 93
31360000

b6)ε7

+( 4101
68719476736

− 569953
180858388480

b2 + 6165641
1186883174400

b4 + 25654589
28397107200000

b6

+ 171697
316240512000000

b8)ε8 +O(ε9),

(3.2.22)
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λ′4 = 9 + ( 9
64

+ 9
70
b2)ε2 + 3

512
ε3 + ( 9

65536
+ 9

4480
b2 + 279

1372000
b4)ε4

−( 15
524288

− 1311
1254400

b2 − 3
12800

b4)ε5

+(− 141
33554432

+ 3207
50462720

b2 + 17789
351232000

b4 + 5953
10084200000

b6)ε6

−(− 21
536870912

+ 19287
1284505600

b2 − 20945241
786759680000

b4 − 93
31360000

b6)ε7

+( 4101
68719476736

− 569953
180858388480

b2 + 6165641
1186883174400

b4 + 25654589
28397107200000

b6

+ 171697
316240512000000

b8)ε8 +O(ε9),

(3.2.23)

λ3 = 16 + ( 2
15

+ 8
63
b2)ε2 + ( 11

108000
+ 1

945
b2 + 59

500094
b4)ε4 − 25

127008
b2ε5+

( 1033
1360800000

+ 58031
5837832000

b2 + 19363
1584297792

b4 + 19561
218336039460

b6)ε6

−( 1
529200

b2 + 61069
6301184400

b4 + 1
1411200

b6)ε7

+(− 60703
31352832000000

+ 10021589
73556683200000

b2 + 2034457
41191742592000

b4+

7397773
74313648339840

b6 + 41146789
110921694798942720

b8)ε8 +O(ε9),

(3.2.24)

λ4 = 16 + ( 2
15

+ 8
63
b2)ε2 + ( 11

108000
+ 1

945
b2 + 59

500094
b4)ε4 + 25

127008
b2ε5+

( 1033
1360800000

+ 58031
5837832000

b2 + 19363
1584297792

b4 + 19561
218336039460

b6)ε6

+( 1
529200

b2 + 61069
6301184400

b4 + 1
1411200

b6)ε7

+(− 60703
31352832000000

+ 10021589
73556683200000

b2 + 2034457
41191742592000

b4+

7397773
74313648339840

b6 + 41146789
110921694798942720

b8)ε8 +O(ε9).

(3.2.25)

One can easily check that for b→ 0 (3.2.18)-(3.2.25) reduce to (3.2.11)-(3.2.16).
It can be shown that for b 6= 0 the stability diagram of equation (3.2.17) has a
similar geometry for ε small as the stability diagram of the Mathieu equation (see
Figure 3.1). The areas of instability depend on the parameter b in the damping term.
As depicted in Figure 3.2 one may observe that when b tends to zero the areas of
instability become narrower and finally when b equals zero the areas of instability
vanish especially for λ = 4n2, n = 1, 2, 3, · · · . This phenomenon has been described
for an equation which differs from the one presented in [23, 24].

3.3 An application in the theory of rain-wind in-

duced vibrations.

In this section an application is given of the results obtained above. The application
is concerned with the rain-wind induced vibrations of a simple one degree of free-
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Figure 3.2: Stability diagram of equation (3.2.17) for various values of b. The shaded
regions are areas of instability. When b = 0 the instability areas have disap-
peared for λ = 4n2.

dom system related to the dynamics of cable-stayed bridges. Firstly it will be shown
how to model this problem in order to obtain a model equation of the form (3.1.1).
Cable-stayed bridges are characterized by inclined stay cables connecting the bridge
deck with one or more pylons. Usually the stay cables have a smooth polyurethane
mantle and a cross section which is nearly circular. Under normal circumstances
for such type of cables one would not expect galloping type of vibrations due to
wind-forces. There are however exceptions: in the winter season ice accretion on
the cable may induce aerodynamic instability resulting in vibrations with relatively
large amplitudes. The instability mechanism for this type of vibrations is known and
can be understood on the basis of quasi-steady modeling and analysis. In this anal-
ysis the so-called Den Hartog’s criterion expressing a condition to have an unstable
equilibrium state plays an important part. The other exception concerns vibrations
excited by a wind-field containing raindrops. This phenomenon has probably been
detected for the first time by Japanese researchers as can be derived from the papers
by Matsumoto a.o. [17, 18]. As has been observed on scale models in wind-tunnels
the raindrops that hit the inclined stay cable generate one or more rivulets on the
surface of the cable. The presence of flowing water on the cable changes the cross
section of the cable as experienced by the wind field. Accordingly the pressure dis-
tribution on the cable with respect to the direction of the (uniform) wind flow may
become asymmetric, resulting in a lift force perpendicular to direction of the wind
velocity.
It is of interest to remark that there is an important difference between the presence
of ice accretion and rivulets as far as it concerns the dynamical behaviour. The
ice accretion concerns an ice coating fixed to the surface of the cable whereas the
rivulet concerns a flow of water on the surface of the cable where the position of the
rivulet depends on the resulting wind velocity, the surface tension of the water and
the adhesion between the water and polyurethane mantle of the cable.
For the interesting cases the thickness of the ice accretion is not uniform: the evolu-
tion process of ice accretion usually results in an ice coating involving a ridge of ice.
The case with water rivulets can also be characterized by the presence of the ridge of
water be it with the difference that this water ridge is not fixed to the surface of the
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cable. As long as the water ridge is present, it may be blown off if the wind-speed
exceeds a critical value, one may assume that the position of the ridge varies in time.
Subsequently one may assume that this time-dependency has a similar character as
the motion of the cable i.e. if the cable oscillates harmonically then one may expect
that the water ridge moves accordingly. The observation of this complicated system
of an inclined cable, connecting a bridge deck and a pylon, with a moving rivulet
leads to the following conclusion.
The inclination of the cable is relevant for having a rivulet. The rivulet, however,
can be viewed as a moving ridge which may be modeled by a solid state. According
to this way of modeling the inclination of the cable is no longer relevant. Hence we
consider as a prototype of an oscillator a one degree of freedom system consisting of
a horizontal rigid cable supported by springs with a solid state ridge moving with
small amplitude oscillations. From the point of view of the type of equation of mo-
tion, we arrive at a second order differential equation with external forcing. A more
detailed description of the modeling is presented in the following section.

3.3.1 The Model Equation for Rain-Wind Induced Vibra-

tions of a Prototype Oscillator

The modeling principles we use are closely related to the quasi-steady approach as
given in [8, 27]. We consider a rigid cylinder with uniform cross-section supported by
springs in a uniform rain-wind flow directed perpendicular to the axis of the cylinder.
The oscillator is constructed in such a way that only vertical (one degree of freedom)
oscillations are possible. The basic cross-section of the cylinder is circular, however,
on the surface of the cylinder there is a ridge able to carry out small amplitude
oscillations. To model the rain-wind forces on the cylinder a quasi-steady approach
is used; the type of oscillations which can be studied on the respective assumptions
are known as galloping. A more detailed description of the quasi-steady approach
can be found in [27, 31]. The basic assumption of the quasi-steady approach is that
at each moment in the dynamic situation the rain-wind force can be taken equal to
the steady force exerted on the cylinder in static state. In the dynamic situation one
should take into account that the flow-induced forces are based on the instantaneous
flow velocity which is equal to the vector sum of flow velocity and the time varying
vertical flow velocity induced by the (vertical) motion of the cylinder.
The steady rain-wind forces can be measured in a wind-tunnel and are expressed in
the form of non-dimensional aerodynamic coefficients which depend on the angle of
attack α. This angle, an essential variable for the description of the dynamics of the
oscillator, is defined as the angle between the resultant flow velocity and an axis of
reference fixed to the cylinder; measured positive in clockwise direction. The system
we will study in more detail is sketched in Figure 3.3.

The horizontal wind velocity is U and as the cylinder is supposed to move in
the positive y direction, there is a virtual vertical wind velocity −ẏ. The drag force
D is indicated in the direction of the resultant wind-velocity Ur, whereas the lift
force L is perpendicular to D in anti clockwise direction. The ridge on the cylinder
(shaded indicated in Figure 3.3) is able to carry out small amplitude oscillations.
The aerodynamic force Fy in vertical direction can easily be derived from Figure 3.3
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Figure 3.3: Cross-section of the cylinder-spring system, fluid flow with respect to the
cylinder and wind forces on the cylinder

:

Fy = −D sin φ− L cosφ, (3.3.1)

where φ is the angle between Ur and U , positive in clockwise direction, with |φ| ≤
π/2.
The drag and lift force are given by the empirical relations:

D =
1

2
ρ d l U2

r CD(α), (3.3.2)

L =
1

2
ρ d l U2

r CL(α),

where ρ is the density of air, d the diameter of the cylinder, l the length of the
cylinder, CD(α) and CL(α) are the drag and lift coefficient curves respectively, de-
termined by measurements in a wind-tunnel. From Figure 3.3 it follows that :

sin φ = ẏ/Ur, (3.3.3)

cosφ = U/Ur,

α = αs + arctan(ẏ/U),

where αs is the angle between the symmetry axis and the horizontal wind velocity.
The equation of motion of the oscillator readily becomes :

mÿ + cyẏ + kyy = Fy, (3.3.4)

where m is the mass of the cylinder, cy > 0 the structural damping coefficient of the
oscillator, ky > 0 the spring constant. By using (3.3.2) and (3.3.3) we obtain for Fy:

Fy = −1

2
ρ d l

√

U2 + ẏ2 (CD(α)ẏ + CL(α)U). (3.3.5)
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Setting ω2
y = ky/m, τ = ωyt and z = ωyy/U equation (3.3.4) becomes:

z̈ + 2βż + z = −K
√

1 + ż2 (CD(α)ż + CL(α)), (3.3.6)

α = αs + arctan(ż),

where 2β = cy/mωy and K = ρ d lU/2mωy are non-dimensional parameters, and ż
now stands for differentiation with respect to τ . We study the case where the drag
and lift coefficient curve can be approximated by a constant and a cubic polynomial
respectively:

CD(α) = CDo
, (3.3.7)

CL(α) = CL1
(α− αo) + CL3

(α− αo)
3,

where CDo
> 0 and for the interesting cases CL1

< 0 and CL3
> 0. As known in [27]

that the aerodynamic drag and lift coefficient may be obtained from wind-tunnel
experiments and have a typical result which can be approximated by (3.3.7) where
αo is a special value such that the aerodynamic lift coefficient equals zero when
α = αo. By using α = αs + arctan(ż) we obtain for CL(α):

CL(α) = CL1
(αs − αo + arctan ż) + CL3

(αs − αo + arctan ż)3 . (3.3.8)

The cases that αs = αo and αs 6= αo where αs and αo are (time independent)
parameters have been studied in [8]. Here we study the case that the position of the
(water) ridge varies with time:

αs − αo = f(t) = f(τ/ωy). (3.3.9)

Substitution of (3.3.8) and (3.3.9) into (3.3.6) and expanding the right hand side
with respect to ż in the neighbourhood of ż = 0 yields:

z̈ + z = −K[CL1
f(t) + CL3

f 3(t) + (3.3.10)

(CDo
+ CL1

+ 2β/K + 3CL3
f 2(t)) ż +

(
1

2
CL1

f(t) +
1

2
CL3

f 3(t) + 3CL3
f(t)) ż2 +

(
1

6
CL1

+ CL3
+

1

2
CDo

+
1

2
CL3

f 2(t)) ż3] + 0(ż4).

Inspection of this equation shows that for f(t) ≡ 0 one obtains:

z̈ + z = K[−(CDo
+ CL1

+ 2β/K) ż − (
1

6
CL1

+ CL3
+

1

2
CDo

) ż3]. (3.3.11)

When the following conditions hold :

CDo
+ CL1

+ 2β/K < 0 (Den Hartog’s Criterion), (3.3.12)
1

6
CL1

+ CL3
+

1

2
CDo

> 0

the equation can be reduced to the Rayleigh equation, which has, as is well-known,
a unique periodic solution (limit-cycle). The linearized version of equation (3.3.11)
has apart from z ≡ 0 only unbounded solutions if Den Hartog’s criterion applies.
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Linearization of equation (3.3.10), however, leads to an equation which may have
periodic solutions and is hence of interest to study in more detail. The nonlinear
equation (3.3.10) will be studied further in subsection 3.3.2. The linearized version
of (3.3.10) can be written as :

z̈ +K(CDo
+ CL1

+ 2β/K + 3CL3
f 2(t)) ż + z + (3.3.13)

K(CL1
f(t) + CL3

f 3(t)) = 0.

We consider the case that f(t) = A cos( ω
ωy
τ) = A cos(Ωτ) where Ω = ω

ωy
. With

f 2(t) =
1

2
A2(1 + cos(2Ωτ)) and

f 3(t) =
3

4
A3(cos(Ωτ) +

1

3
cos(3Ωτ))

(3.3.13) becomes:

z̈ + (KAo +KA1 cos(2Ωτ)) ż + z + (3.3.14)

KA2 cos(Ωτ) +KA3 cos(3Ωτ) = 0,

where

Ao = CDo
+ CL1

+ 2β/K +
3

2
CL3

A2,

A1 =
3

2
CL3

A2,

A2 = CL1
A+

3

4
CL3

A3,

A3 =
1

4
CL3

A3.

For the oscillator we study the interesting case Ω = 1+ εη where |ε| � 1. By setting
(1 + εη)τ = θ (3.3.14) becomes:

(1 + εη)2 z̈ + (1 + εη)(KAo +KA1 cos(2θ)) ż + z + (3.3.15)

KA2 cos(θ) +KA3 cos(3θ) = 0,

where a dot now stands for differentiation with respect to θ. Let the coefficients
KAi for i = 0, 1, 2, 3 be of O(ε). Then (3.3.15) can be written as:

z̈ + (KAo +KA1 cos(2θ)) ż + (1 − 2εη)z + (3.3.16)

KA2 cos(θ) +KA3 cos(3θ) +O(ε2) = 0.

If one neglects the O(ε2) terms then the only difference between equation (3.3.16)
and equation (3.1.1)(for m = 1) is the term KA3 cos(3θ). This term can be regarded
as a forcing term, but as the frequency is three times greater than the natural
frequency it is not relevant for the O(ε) approximation. Putting KAo = aoε, KA1 =
a1ε, KA2 = a2ε, and KA3 = a3ε and neglecting O(ε2) of (3.3.16) one obtains:

z̈ + ε(ao + a1 cos(2θ)) ż + (1 − 2εη)z + a2 cos(θ) + a3 cos(3θ) = 0. (3.3.17)
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Figure 3.4: Separation of the instability tongue: Figure 3.4a: ao = 0, Figure 3.4b: ao 6= 0

Transforming (3.3.17) by new variables y1 and y2 i.e.

z = y1 cos θ + y2 sin θ, (3.3.18)

ż = −y1 sin θ + y2 cos θ,

one obtains by first order averaging:





˙̄y1

˙̄y2



 = ε





−1
2
ao + 1

4
a1 −η

η −1
2
ao − 1

4
a1









ȳ1

ȳ2



+ ε





0

−1
2
a1



 . (3.3.19)

The critical point of (3.3.19) is

( 1
2
ηa2

1
4
a2
o − 1

16
a2

1 + η2
,

1
2
a2(−1

2
ao + 1

4
a1)

1
4
a2
o − 1

16
a2

1 + η2

)

.

If the determinant of the coefficient matrix of (3.3.19) is not equal to zero then
(3.3.17) has a periodic solution and its stability depends on the eigenvalues of the
coefficient matrix . The eigenvalues of the coefficient matrix are

1

2
ε

(

−ao ±
√

1

4
a2

1 − 4η2

)

.

By equating these eigenvalues to zero one obtains the transition curves between the

stable and unstable regions ao =
√

1
4
a2

1 − 4η2 in the a1 − η plane. In case ao = 0 the

stability diagram is depicted in Figure 3.4a, and if ao > 0 then the instability area
separates from the η-axis with a distance 2ao as shown in Figure 3.4b.
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3.3.2 The non-linear model

In this section we present some results on the analysis of the non-linear model
equation (3.3.10) which can be written as:

z̈ + z = −K[A2 cos(Ωτ) + A3 cos(3Ωτ) + (3.3.20)

(Ao + A1 cos(2Ωτ)) ż − (2εη/K)z +

(A4 cos(Ωτ) +
1

2
A3 cos(3Ωτ)) ż2 +

(A5 +
1

6
A1 cos(2Ωτ)) ż3],

where Ao, A1, A2, A3 are defined in (3.3.14) and

A4 =
1

2
CL1

A + 3CL3
A+

3

8
CL3

A3,

A5 =
1

6
CL1

+ CL3
+

1

2
CDo

+
1

4
CL3

A2.

We consider the case that Ω = 1, i. e. the natural frequency of the oscillator is
the same as the frequency of the motion of the water ridge. It seems natural that
when the oscillator moves up and down then the water ridge along cylinder will be
moving to the right and the left with the same frequency. By application of the
transformation (3.3.18):

z = y1 cos τ + y2 sin τ, (3.3.21)

ż = −y1 sin τ + y2 cos τ,

we obtain after first order averaging:

˙̄y1 = K[(−1

2
Ao +

1

4
A1)ȳ1 + (

1

8
A3 −

1

4
A4)ȳ1ȳ2 − (3.3.22)

3

8
A5ȳ1ȳ

2
2 + (

1

24
A1 −

3

8
A5)ȳ

3
1],

˙̄y2 = −K[
1

2
A2 + (

1

2
Ao +

1

4
A1)ȳ2 + (

1

8
A4 −

1

16
A3)ȳ

2
1 +

(
3

8
A4 +

1

16
A3)ȳ

2
2 +

3

8
A5ȳ

2
1ȳ2 + (

3

8
A5 +

1

24
A1)ȳ

3
2].

The linearized system (3.3.22) has the critical point (0,− A2

Ao+ 1

2
A1

) which is unstable

if Ao − 1
2
A1 < 0. With the original variables this inequality reads:

CDo
+ CL1

+ 2β/K +
3

4
CL3

A2 < 0,

which can be considered as a modified Den Hartog criterion expressing that the
instability is due to self-excitation combined with parametric excitation. Critical
points of (3.3.22) may correspond to periodic solutions of equation (3.3.20). One
important critical point can be found by setting ȳ1 ≡ 0. The second coordinate can
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be found by solving the cubical equation obtained from the right hand side of the
second equation in (3.3.22) :

(
1

2
Ao +

3

8
A5ȳ

2
2)ȳ2 = −{1

2
A2 +

1

4
A1ȳ2 + (3.3.23)

(
3

8
A4 +

1

16
A3)ȳ

2
2 +

1

24
A1ȳ

3
2}.

The right hand side of this equation can be made arbitrary small by letting A→ 0.
Accordingly a solution can be found by setting :

ȳ2 = y20 + Ay21, (3.3.24)

where

y2
20 = −1

2
Ao/

3

8
A5, Ao < 0 and A5 > 0. (3.3.25)

y21 can be computed by substitution of (3.3.24) into (3.3.23) and by applying a
straight forward elementary perturbation procedure. It can be shown that the criti-
cal point (0, ȳ2) corresponds with a stable periodic solution (limit cycle) of equation
(3.3.22) in the sense of an approximation accurate up to O(A).

If A = 0 the critical points (ȳ10, ȳ20) of (3.3.22) are on the circle ȳ2
1 + ȳ2

2 =
−1

2
Ao/

3
8
A5, implying that the original equation has periodic solutions which can be

approximated by time harmonic functions of constant amplitude
√

−1
2
Ao/

3
8
A5 and

arbitrary phase. If A = O(1) equation (3.3.23) may have one, two or three real zeros.

The other critical points of (3.3.22) can be found by assuming that ȳ1 6= 0. In
this case the right hand side of the first equation (3.3.22) can be written as

Kȳ1[(−
1

2
Ao +

1

4
A1) + (

1

8
A3 −

1

4
A4)ȳ2 −

3

8
A5ȳ

2
2 + (

1

24
A1 −

3

8
A5)ȳ

2
1],

and it then follows that

ȳ2
1 = −[(−1

2
Ao +

1

4
A1) + (

1

8
A3 −

1

4
A4)ȳ2 −

3

8
A5ȳ

2
2]/(

1

24
A1 −

3

8
A5). (3.3.26)

Substituting (3.3.26) into the right hand side of the second equation of (3.3.22) one
obtains a cubical polynomial in ȳ2. Thus to find the zeros of this polynomial we can
use Cardano’s formula. As an example the case is considered where A varies and
where the other parameters are given the following numerical values: CDo

= 0.5,
CL1

= −6.0, β/K = 2.0, and CL3
= 2.0. In case ȳ1 ≡ 0, by using Cardano’s formula

one finds that for A = 0.1420 there are two real zeros. Whereas for 0 < A < 0.1420
three real zeros exist and for A > 0.1420 only one. However, in case ȳ1 6= 0 we do
not find critical points. The phase portraits for these three cases are given in Figure
3.5 including the case A = 0. These portraits are drawn by using the DSTOOL
software package.

It is of interest to consider the case Ω 6= 1, implying that the frequency ratio
of the natural frequency of the oscillator and the frequency of the motion of the
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Figure 3.5: Orbits of equation (3.3.22) for A=0, A=0.1, A=0.1420 and A=0.25. Vertical
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ridge differs (slightly) from 1. By setting Ω = 1 + εη one obtains after first order
averaging:

˙̄y1 = K[(−1

2
Ao +

1

4
A1)ȳ1 + (

1

8
A3 −

1

4
A4)ȳ1ȳ2 − (3.3.27)

3

8
A5ȳ1ȳ

2
2 + (

1

24
A1 −

3

8
A5)ȳ

3
1] − εηȳ2,

˙̄y2 = −K[
1

2
A2 + (

1

2
Ao +

1

4
A1)ȳ2 + (

1

8
A4 −

1

16
A3)ȳ

2
1 +

(
3

8
A4 +

1

16
A3)ȳ

2
2 +

3

8
A5ȳ

2
1ȳ2 + (

3

8
A5 +

1

24
A1)ȳ

3
2] + εηȳ1.

Let now additionally A = 0.1 and consider η as a parameter. By using a Gröbner
basis algorithm one can show that for η = 0.194 there are two real critical points
of (3.3.27), and for 0 < η < 0.194 three real critical points exist, and for η > 0.194
only one. In Figure 3.6 a sketch is given of this result, that is, how the number of
critical points depends on η. In Figure 3.7 the phase portraits are given for η = 0.1
and η = 0.2. For η = 0.1 there is a stable critical point corresponding with a limit
cycle. Furthermore, for η = 0.2 there exists a periodic orbit corresponding with
slowly varying amplitudes i.e. modulated oscillations.
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3.4 Conclusions and Remarks

In this chapter a linear second order equation with time-periodic damping coefficient
is investigated. It is shown that the equation can be used as a model for the study of
rain-wind induced vibrations of a simple oscillator. The equation is a special case of
Ince’s equation. It is known that this equation displays coexistence, corresponding
with curves in the stability diagram on which two linearly independent periodic
solutions exist. These curves can be considered as a limiting case of the closure
of the instability gaps. Although this phenomenon has been described in [16] in
a qualitative sense, little quantitative results such as stability diagrams have been
obtained. A new remarkable stability diagram is presented in Figure 2.1b; for small
values of ε the (transition) curves are additionally given by (truncated) power series
in ε. As far as it concerns the application it seems that only one application in [24]
has been published yet. The application presented here seems to be new and is of
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practical relevance. Problems with a time-varying damping coefficient play a role in
the dynamics of rain-wind induced vibrations of elastic structures and are hence of
considerable interest.
Furthermore, in this chapter a model equation for the study of rain-wind induced
vibrations of a simple oscillator has been introduced. Both for the linear model
equation as for the non-linear one periodic solutions are presented. For the linear
equation the excitation mechanism may be ordinary forcing as well as combined
parametrical and ordinary forcing. In both cases intermittent periodic self-excitation
may additionally be present. For the non-linear model equation all three excitation
mechanisms play a part in the excitation of a periodic motion as can be derived from
equation (3.3.23) where all coefficients Ai i = 0, 1, 2, 3, 4, 5 are present. In case that
Ω 6= 1 the averaged system may have a periodic orbit corresponding to modulated
oscillations of the original equation.

3.5 Appendix

As described in section 3.2 by equating the coefficients of the sine and cosine terms
in system (3.2.7)to zero we obtain a system of infinitely many equations for an and
bn. This system is given by:

1
2
(λ− 1

8
ε2)ao + 1

2
εb2 − 1

16
ε2a4 = 0,

− 1
16
ε2a3 + 1

2
εb1 + (λ− 1 − 1

8
ε2)a1 + 1

2
εb3 − 1

16
ε2a5 = 0,

1
16
ε2b3 + 1

2
εa1 + (λ− 1 − 1

8
ε2)b1 − 1

2
εa3 − 1

16
ε2b5 = 0,

(λ− 4 − 3
16
ε2)a2 + 1

2
εb4 − 1

16
ε2a6 = 0,

1
2
εao + (λ− 4 − 1

16
ε2)b2 − 1

2
εa4 − 1

16
ε2b6 = 0,

− 1
16
ε2a1 − 1

2
εb1 + (λ− 9 − 1

8
ε2)a3 + 1

2
εb5 − 1

16
ε2a7 = 0,

1
16
ε2b1 + 1

2
εa1 + (λ− 9 − 1

8
ε2)b3 − 1

2
εa5 − 1

16
ε2b7 = 0,

− 1
16
ε2an−4 − 1

2
εbn−2+

(λ− n2 − 1
8
ε2)an + 1

2
εbn+2 − 1

16
ε2an+4 = 0, n ≥ 4

− 1
16
ε2bn−4 + 1

2
εan−2+

(λ− n2 − 1
8
ε2)bn − 1

2
εan+2 − 1

16
ε2bn+4 = 0, n ≥ 4 .

(3.5.1)

This system can be split up into two independent systems which contain odd indices
and even indices respectively. In this way we have two systems Av = 0 and Bw = 0,
where

v = (a1 b1 a3 b3 a5 b5 · · ·)T , w = (ao a2 b2 a4 b4 · · ·)T ,
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A =







































1 µ1 ν1 µ1 ν1 0 0 0 0 0 . . .
µ1 1 −µ1 −ν1 0 ν1 0 0 0 0 . . .
ν3 −µ3 1 0 0 µ3 ν3 0 0 0 . . .
µ3 −ν3 0 1 −µ3 0 0 ν3 0 0 . . .
ν5 0 0 −µ5 1 0 0 µ5 ν5 0 . . .
0 ν5 µ5 0 0 1 −µ5 0 0 ν5 . . .
0 0 ν7 0 0 −µ7 1 0 0 µ7 . . .
0 0 0 ν7 µ7 0 0 1 −µ7 0 . . .
0 0 0 0 ν9 0 0 −µ9 1 0 . . .
0 0 0 0 0 ν9 µ9 0 0 1 . . .
...

...
...

...
...

...
...

...
...

...
. . .







































with

µn =
1
2
ε

λ− n2 − 1
8
ε2
, νn = −

1
16
ε2

λ− n2 − 1
8
ε2
, n = 1, 3, 5, · · · , and

B =







































1 0 σo τo 0 0 0 0 0 0 . . .
0 1 0 0 0 σ1 τ1 0 0 0 . . .
σ2 0 1 −σ2 0 0 τ2 0 0 0 . . .
τ3 0 −σ3 1 0 0 σ3 τ3 0 0 . . .
0 σ3 0 0 1 −σ3 0 0 τ3 0 . . .
0 τ4 0 0 −σ4 1 0 0 σ4 τ4 . . .
0 0 τ4 σ4 0 0 1 −σ4 0 0 . . .
0 0 0 τ5 0 0 −σ5 1 0 0 . . .
0 0 0 0 τ5 σ5 0 0 1 −σ5 . . .
0 0 0 0 0 τ6 0 0 −σ6 1 . . .
...

...
...

...
...

...
...

...
...

...
. . .







































with

σo =
1
2
ε

λ
2
− 1

16
ε2
, τo = −

1
16
ε2

λ
2
− 1

16
ε2
,

σ1 =
1
2
ε

λ− 4 − 3
16
ε2
, τ1 = −

1
16
ε2

λ− 4 − 3
16
ε2
,

σ2 =
1
2
ε

λ− 4 − 1
16
ε2
, τ2 = −

1
16
ε2

λ− 4 − 1
16
ε2
,

σn+1 =
1
2
ε

λ− 4n2 − 1
8
ε2
, τn+1 = −

1
16
ε2

λ− 4n2 − 1
8
ε2
, n ≥ 2.

To find the π-periodic solution(s) of (3.2.3) we expand y in the following way :

y =
ão
2

+
∞
∑

n=1

(ãn cos(2nt) + b̃n sin(2nt)). (3.5.2)
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Substituting (3.5.2) into (3.2.3), and observing that

2 cos(2t) sin(2nt) = sin((2n+ 2)t) + sin((2n− 2)t),
2 cos(2t) cos(2nt) = cos((2n+ 2)t) + cos((2n− 2)t)

it follows that

(λ− 1
8
ε2) ão

2
+ ε ão

2
sin(2t) − 1

16
ε2ão cos(4t)+

∑∞

n=1(λ− 1
8
ε2 − 4n2)[ãn cos(2nt) + b̃n sin(2nt)]+

1
2
ε
∑∞

n=1[ãn sin((2n+ 2)t) − ãn sin((2n− 2)t)−

b̃n cos((2n+ 2)t) + b̃n cos((2n− 2)t)]−

1
16
ε2
∑∞

n=1[ãn cos((2n+ 4)t) + ãn cos((2n− 4)t)+

b̃n sin((2n+ 4)t) + b̃n sin((2n− 4)t)] = 0.

(3.5.3)

By equating the coefficients of sine and cosine terms in this system to zero, one
obtain the following infinite system of linear equations :

1
2
(λ− 1

8
ε2)ão + 1

2
εb̃1 − 1

16
ε2ã2 = 0,

(λ− 4 − 3
16
ε2)ã1 + 1

2
εb̃2 − 1

16
ε2ã3 = 0,

1
2
εão + (λ− 4 − 1

16
ε2)b̃1 − 1

2
εã2 − 1

16
ε2b̃3 = 0,

− 1
16
ε2ãn−2 − 1

2
εb̃n−1+

(λ− 4n2 − 1
8
ε2)ãn + 1

2
εb̃n+1 − 1

16
ε2ãn+2 = 0, n ≥ 2,

− 1
16
ε2b̃n−2 + 1

2
εãn−1+

(λ− 4n2 − 1
8
ε2)b̃n − 1

2
εãn+1 − 1

16
ε2b̃n+2 = 0, n ≥ 2 .

(3.5.4)

This system can be written as Bu = 0, where

u = (ão ã1 b̃1 ã2 b̃2 ã3 b̃3 · · ·)T .

To get the nontrivial periodic solutions of (3.2.3), one should set the determinant of
matrix A, detA, or the determinant of matrix B, detB, equal to zero. The values
of λ and ε which satisfy detA = 0 are related to the 2π-periodic solutions and those
values related to detB = 0 are the π-periodic solutions. To evaluate the convergence
of the infinite determinants of the matrices A and B, we will use the following defi-
nition and theorem.
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Definition. An infinite matrix H = (hij), i, j = 1, 2, 3, · · · is called an infinite
matrix of Hill-type if

∑

i,j

|hij − θij| <∞

where

θij =







1, i = j

0, i 6= j .

Thus, according to this definition the infinite matrices A and B are of Hill-type
because all series

∑

i |µi|,
∑

i |νi|,
∑

i |σi| and
∑

i |τi| are convergent.
Theorem (Th 1.1 [19]). Suppose H = (hij), i, j = 1, 2, 3, · · · is an infinite matrix of
Hill-type and HN = (hij), i, j = 1, 2, 3, · · · , N . Then the infinite determinant detH
exist, |detH| ≤ P <∞ and

|detHN − detHN−1| ≤ P{|hNN − 1| + (
N−1
∑

i=1

|hiN |)(
N−1
∑

i=1

|hNi|)}

where

P =
∞
∏

i=1

(1 +
∞
∑

j=1

|hij − θij|) .

So this theorem guarantees the existence of the infinite determinant of the infinite
matrix of Hill-type. Furthermore, based on this theorem we can determine not only
the upper bound of the absolute value of the determinant but also we can estimate
the error truncating the infinite determinant.
Now consider the infinite matrix B = (bij), i, j = 1, 2, 3, · · ·. Let

KB =
∏∞

i=1(1 +
∑∞

j=1 |bij − θij|)

= (1 + |σo| + |τo|)(1 + |σ1| + |τ1|)(1 + |2σ2| + |τ2|)

(1 + |2σ3| + |2τ3|)(1 + |2σ3| + |τ3|)
∏∞

n=4(1 + |2σn| + |2τn|)2.

(3.5.5)

Because
∑∞

n (|2σn| + |2τn|) is convergent it follows that KB < ∞. Furthermore,
using the theorem above we can write

|detB2n+1 − detB2n| ≤ KB{0 + (
∑2n

i=1 |bi,2n+1|)(
∑2n

i=1 |b2n+1,i|)}

= KB(|σn| + |τn−1|)(|σn+1| + |τn+1|)

= O(n−4) .

(3.5.6)

Similarly, for matrix A = (aij), i, j = 1, 2, 3, · · · we have

|detA2n+1 − detA2n| ≤ KA(|ν2n−3| + |µ2n−1|)(|ν2n+1| + |µ2n+1|)

= O(n−4) ,
(3.5.7)
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where

KA =
∏∞

i=1(1 +
∑∞

j=1 |aij − θij|)

=
∏∞

n=1(1 + |2µ2n−1| + |2ν2n−1|)2 .
(3.5.8)
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Chapter 4

A New Model for the Study of

Rain-wind Induced Vibrations of a

Simple Oscillator †

Abstract. In this chapter a model equation is presented for the study of rain-wind
induced vibrations of a simple oscillator. As will be shown the presence of raindrops
in the wind-field may have an essential influence on the dynamic stability of the
oscillator. In this model equation the influence of the variation of the mass of the
oscillator due to an incoming flow of raindrops hitting the oscillator and a mass flow
which is blown and shaken off, is investigated. The time-varying mass is modeled
by a time harmonic function whereas simultaneously also time-varying lift and drag
forces are considered.

4.1 Introduction

Inclined stay cables of bridges are fixed on one end to a pylon and on the other
end to the bridge-deck. Usually the stay cables have a polyurethane mantle and a
cross section which is nearly circular. With low structural damping of the bridge, a
wind-field containing raindrops may induce vibrations of the cables.
As an example one can refer to Erasmus bridge in Rotterdam of which the stay
cables vibrated heavily on November 4, 1996 less then two months after its opening.
The problem of rain-wind induced vibrations of stay cables has been reported and
studied experimentally for the first time in [13]. Additional experimental studies
can be found in [17, 18] and [33]. In these papers it is remarked that regretfully
calculation models are not available. A first attempt to model this problem can
be found in [28] where in particular time-varying lift and drag forces are modeled.
Time-varying lift and drag forces are due to the movement of the water rivulet on the

†This chapter is a revised version of [30], A New Model for the Study of Rain-wind Induced
Vibrations of a Simple Oscillator, submitted for publication.
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cable. In recent years some authors [26, 36, 35] have studied models for rain-wind
induced vibrations of cables. In [36], an analytical study of wind-rain induced cable
vibrations was presented by considering the influence of a moving upper rivulet on
the cable. However, the varying mass of rain water on the cables has not been taken
into account by these authors.

In this chapter a possible additional effect is taken into account namely the
variation of the quantity of rainwater located on the cable. In terms of modeling
one can say that the vibrating mass of rainwater on the cable is time-dependent,
and is modeled by a time harmonic function, whereas simultaneously also time-
varying lift and drag forces are considered. The attention is mainly focused on
the interaction of the rain with the oscillator, assuming that this interaction is an
instability mechanism. Raindrops hitting the oscillator, may form a rivulet or a
water ridge on the oscillator. However in a stationary situation the mass flow of
incoming raindrops hitting the oscillator and the mass flow of raindrops shaken off
will be equal. If these mass flows are not equal then the mass of raindrops attached
to the oscillator varies with time.
One may conclude that the following mechanisms may be relevant for the study of
the instability of the oscillator.

• the assumption that the mass of the ridge and hence the mass of oscillator
may vary in time, seems realistic,

• drag and lift forces vary usually in the dynamic situation, however due to the
fact that the position of the ridge on the oscillator is not fixed but varies with
time, the aerodynamic coefficients additionally depend on time.

As the second mechanism has been studied in [28] it looks of interest to include the
additional effect of time-varying mass. It should be stressed that the dynamics of
the mass of the rivulets will not be modeled by a separate equation of motion in this
stage: in the modeling we assume that either the position of the rivulets is fixed or
varies harmonically in time in the same way as the oscillator.

4.2 A model equation with time-varying mass and

lift and drag forces

In this section we use the modeling principles as given in [8] or [31]. Consider a
horizontal rigid cylinder with uniform circular cross section supported by springs.
A rain-wind flow is directed to the axis of the cylinder. The cylinder with springs is
constructed in such a way that only vertical oscillations i.e. oscillations in cross-flow
are possible. The raindrops that hit the cable may stay on the surface of the cylinder
for some time and may form a ridge of water of which the position varies with time.
Due to the variation of the acceleration of the cable and the aerodynamic forces,
part of the water will be blown and or shaken off and hence the mass of the water
ridge varies in time. The system which will be studied is sketched in Figure 4.1.
U is the horizontal uniform velocity of the wind containing raindrops. When the
cylinder moves in the positive y direction a virtual wind velocity −ẏ is induced, i.e. a
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Figure 4.1: Cross-section of the cylinder-spring system, fluid flow with respect to the
cylinder and wind forces on the cylinder

wind flow with velocity ẏ in opposite direction. The drag force D is indicated in the
direction of the resultant wind-velocity Ur, whereas the lift force L is perpendicular
to D in anti clockwise direction. The water ridge on the cylinder, boldly indicated
in Figure 4.1, is assumed to carry out harmonic oscillations with small amplitude
on the surface of the cylinder whereas the mass of the water ridge mr(t) is supposed
to vary harmonically in time as well. The aerodynamic force Fy in vertical direction
follows from Figure 4.1 :

Fy = −D sin φ− L cosφ, (4.2.1)

where φ is the angle between Ur and U , positive in clockwise direction: |φ| < π/2.
The drag and lift forces are given by the empirical relations:

D =
1

2
ρ d l U2

r CD(α), (4.2.2)

L =
1

2
ρ d l U2

r CL(α),

where ρ is the density of the flowing medium (air with raindrops), d the diameter
of the cylinder, l the length of the cylinder, CD(α) and CL(α) are the drag and lift
coefficient curves respectively, determined by measurements in a wind-tunnel.
From Figure 4.1 it follows that :

sin φ = ẏ/Ur, (4.2.3)

cosφ = U/Ur,

α = αs + arctan(ẏ/U).

The equation of motion of the oscillator readily becomes :

d

dt
[(M +mr(t))

dy

dt
] + cy

dy

dt
+ kyy = Fy, (4.2.4)
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Figure 4.2: Aerodynamic drag and lift coefficients

where M is the mass of the cylinder, mr(t) the time-varying mass of the raindrops on
the cylinder, cy > 0 the structural damping coefficient of the oscillator, and ky > 0
the spring constant. By using(4.2.1), (4.2.2) and (4.2.3) we obtain for Fy :

Fy = −1

2
ρ d l

√

U2 + ẏ2 (CD(α)
dy

dt
+ CL(α)U). (4.2.5)

Let mr(t)/M = εm(t), where ε > 0 is a small parameter, (4.2.4) becomes :

(1 + εm(t))
d2y

dt2
+ (

cy
M

+ ε
dm

dt
)
dy

dt
+ ω2

yy = Fy/M, (4.2.6)

where ω2
y = ky/M . The case is studied where the drag and lift coefficient curves can

be approximated by :

CD(α) = CDo
, (4.2.7)

CL(α) = CL1
(α− αo) + CL3

(α− αo)
3,

where CDo
> 0, CL1

< 0, CL3
> 0 and αo > 0, αo is any angle in the domain

of the α-axis of the CL(α) curve where the slope is negative i. e. CL1
< 0. The

approximations (4.2.7) fit as a first step with typical curves obtained from wind
tunnel experiments as indicated in Figure 4.2 (see also [3]). By using (4.2.3), (4.2.7)
can be written as:

CL(α) = CL1
(αs − αo + arctan(ẏ/U)) + CL3

(αs − αo + arctan(ẏ/U))3. (4.2.8)

Now the variation of the position of the water ridge can be modeled by αs−αo = f(t).
Substitution of this variation in (4.2.8) using (4.2.5) and (4.2.7) one obtains for
(4.2.6) the following linearized model equation (around ẏ = 0):

(1 + εm(t))
d2y

dt2
+ (K̄(CDo

+ CL1
) +

cy
M

+ 3CL3
K̄f 2(t) + ε

dm

dt
)
dy

dt
(4.2.9)

+ω2
yy = −K̄(CL1

f(t) + CL3
f 3(t))U,

where K̄ = ρdlU/2M . Let cy/M = 2εβ and K̄ = εKω, then by dividing (1 + εm(t))
one obtains :

d2y

dt2
+(εωq(t))

dy

dt
+ω2

y(1−εm(t))y = εKω(CL1
f(t)+CL3

f 3(t))U+O(ε2),(4.2.10)
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where ωq(t) = Kω(CDo
+CL1

) + 2β+3CL3
Kωf 2(t) + dm

dt
, and where ω is defined in

the expressions for f(t) and m(t) below. Consider the following model variations of
the water ridge and m(t) :

f(t) = c1 cos(ωt) + d1 sin(ωt), (4.2.11)

m(t) = a2 cos(2ωt) + b2 sin(2ωt),

f 2(t) = co + c2 cos(2ωt) + d2 sin(2ωt),

where

co =
1

2
(c21 + d2

1), c2 =
1

2
(c21 − d2

1), d2 = c1d1. (4.2.12)

By introducing the new variables z = ωy/U and ωt = τ one obtains:

d2z

dτ 2
+ (εq(τ/ω))

dz

dτ
+

ω2
y

ω2
(1 − εm(τ/ω))z = εK(CL1

f(τ/ω) + (4.2.13)

CL3
f 3(τ/ω)) +O(ε2).

For the main resonance case as studied in this chapter one should consider :

ω2
y

ω2
= 1 − 2εη, (4.2.14)

where η is a detuning parameter. By using (4.2.14), (4.2.13) can be written as :

z̈ + z = εH(z, ż, τ), (4.2.15)

where H(z, ż, τ) = K(CL1
f(τ/ω)+CL3

f 3(τ/ω))−q(τ/ω)ż+(2η+m(τ/ω))z+O(ε).
Let

z = y1 cos(τ) + y2 sin(τ), (4.2.16)

ż = −y1 sin(τ) + y2 cos(τ).

Then (4.2.15) becomes :

ẏ1 = −εH sin(τ), (4.2.17)

ẏ2 = εH cos(τ).

By averaging one obtains :





˙̄y1

˙̄y2



 =





s+ 1
4
b2 + 1

4
c̄2

1
4
d̄2 − 1

4
a2 − η

1
4
d̄2 − 1

4
a2 + η s− 1

4
b2 − 1

4
c̄2









ȳ1

ȳ2



+





1
2
KCL1

d1 + 1
8
d1c̄o

−1
2
KCL1

c1 − 1
8
c1c̄o



 , (4.2.18)
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Figure 4.3: Inside the cone and hyperboloid the critical point is stable .

where s = −(β/ω + 1
2
K(CDo

+ CL1
) + 1

2
c̄o), c̄o = 3coKCL3

, c̄2 = 3c2KCL3
and d̄2 =

3d2KCL3
. The stability of the critical point of (4.2.18) depends on the eigenvalues

λ of the matrix in the equation (4.2.18) and follows from:

(s− λ)2 − (
1

4
b2 +

1

4
c̄2)

2 − (
1

4
d̄2 −

1

4
a2)

2 + η2 = 0. (4.2.19)

For s = 0, implying that the constant damping coefficient vanishes, the transition
curve (or manifold in a higher dimensional parameter space) separating stable and
unstable regions in the relevant parameter space follows from:

η2 =
1

16
(b2 + c̄2)

2 +
1

16
(d̄2 − a2)

2 (4.2.20)

When one sets b2 + c̄2 = X and d̄2 − a2 = Y in (4.2.20) then the equation represents
a cone in the (η,X, Y ) space, with the η-axis as central axis. The domain inside the
cone corresponds with a regime of parameters where all solutions are stable. For
η = 0 i.e. ω = ωy and s = 0 only unstable solutions are found. Apparently for
η = 0 stable solutions only exist if both eigenvalues which follow from (4.2.19) are
negative. For this case it is clear that s < 0 and that the right hand side of (4.2.20)
should be sufficiently small.
Result (4.2.20) describes an interesting property. If for instance c̄2 = d̄2 = 0 which
implies by using (4.2.12) that f(t) ≡ 0 (the position of the water ridge on the surface
is fixed ), by varying the amplitude r1 =

√

a2
2 + b22 one can control the stability of the

trivial solution i.e. pass through the surface of the cone for η 6= 0 fixed. However,
if c̄2 6= 0 and d̄2 6= 0 the right hand side of (4.2.20) can be written in terms of
amplitudes and phases as follows :

1

16
[(b2 + c̄2)

2 + (d̄2 − a2)
2] =

1

16
[r2

1 + r2
2 + 2r1r2 sin(ϕ1 − ϕ2)], (4.2.21)

where r2
1 = a2

2 + b22, r
2
2 = c̄22 + d̄2

2, ϕ1 = arctan(b2/a2) and ϕ2 = arctan(d̄2/c̄2).
From (4.2.21) it follows that by keeping r1 and r2 constant but by varying the phase
difference (ϕ1 − ϕ2) between f(t) and m(t) one can pass through the surface of the
cone separating the stable and unstable regime of parameters.
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4.3 The non-linear model

According to the previous section, by introducing the new variables z = ωy/U and
ωt = τ one obtains :

z̈ + (ε
dm

dτ
+ ε2β/ω)ż +

ω2
y

ω2
(1 − εm(τ/ω))z = −εK

√
1 + ż2 (4.3.1)

(CD(α)ż + CL(α)) +O(ε2),

where K = ρdlU/2Mω, ε2β = cy/M , ω2
y = ky/M , ż = dz/dτ , and

CD(α) = CDo
,

CL(α) = CL1
(f(τ/ω) + arctan ż) + CL3

(f(τ/ω) + arctan ż)3.

Substituting (4.2.14) into (4.3.1), expanding the right hand side of (4.3.1) with re-
spect to ż (up to cubical terms), using (4.2.16) one obtains after first order averaging:

˙̄y1 = ε[
1

2
KCL1

d1 +
1

8
d1c̄o + (s +

1

4
b2 +

1

4
c̄2)ȳ1 + (

1

4
d̄2 −

1

4
a2 − η)ȳ2 (4.3.2)

+d1(3q +
1

12
c̄o −

1

48
c̄2)ȳ

2
1 + d1(q +

1

24
c̄o +

1

48
c̄2)ȳ

2
2 −

c1(2q +
1

12
c̄o −

1

24
c̄2)ȳ1ȳ2 + (p− 1

16
c̄o +

1

24
c̄2)ȳ

3
1 +

1

48
d̄2ȳ

3
2 +

1

16
d̄2ȳ

2
1 ȳ2 + (p− 1

16
c̄o)ȳ1ȳ

2
2],

˙̄y2 = ε[−1

2
KCL1

c1 −
1

8
c1c̄o + (

1

4
d̄2 −

1

4
a2 + η)ȳ1 + (s− 1

4
b2 −

1

4
c̄2)ȳ2

−c1(q +
1

24
c̄o −

1

48
c̄2)ȳ

2
1 − c1(3q +

1

12
c̄o +

1

48
c̄2)ȳ

2
2 +

d1(2q +
1

12
c̄o +

1

24
c̄2)ȳ1ȳ2 +

1

48
d̄2ȳ

3
1 + (p− 1

16
c̄o −

1

24
c̄2)ȳ

3
2 +

(p− 1

16
c̄o)ȳ

2
1ȳ2 +

1

16
d̄2ȳ1ȳ

2
2],

where p = −K( 3
16
CDo

+ 1
16
CL1

+ 3
8
CL3

) and q = K( 1
16
CL1

+ 3
8
CL3

). The signs of p
and q depend on the values of the aerodynamic coefficients which are for instance
given in [6]. System (4.3.2) is a general cubical system, which includes the linear
terms from equation (4.2.18). In the cases where in linear approximation unstable
solutions are found the non-linear terms in system (4.3.2) may provide stable solu-
tions. In what follows some special cases of the general system (4.3.2) are studied.

4.3.1 Fixed position of water ridge and time-varying mass

System (4.3.2) describes both the effect of the time-varying position of the ridge of
water as well as the time-varying mass of rain water on the oscillator. These effects
can be studied separately by first considering the case that the position of the water



52 CHAPTER 4. RAIN-WIND INDUCED VIBRATIONS

−2 −1 1 2

2

1

−1

−2

y2

y1

−2 −1 1 2

1
y

y2

2

1

−1

−2

4.4a. a2 = 0.6 4.4b. a2 = 4

Figure 4.4: The phase portrait of (4.3.3) for a2 = 0.6 and a2 = 4, b2 = 0, η = 0,
CL3

= 2, CL1
= −6, CDo = 1/2, β/ω = 2 and K = 1.

−2 −1

−1

−2

2

1

y2

1y
21

−1

−2

−2 −1 1 2

1y

1

2
y2

4.5a. η = 0.9 4.5b. η = 1.2

Figure 4.5: The phase portraits of equation (4.3.3) for several values of η, the detuning
parameter, a2 = 4, b2 = 0, CL3

= 2, CL1
= −6, CDo = 1/2, β/ω = 2 and

K = 1.

ridge does not vary in time i.e. c̄2 = d̄2 = 0. In this case (4.3.2) becomes :

˙̄y1 = ε[(s̄+
1

4
b2)ȳ1 − (

1

4
a2 + η)ȳ2 + pȳ3

1 + pȳ1ȳ
2
2], (4.3.3)

˙̄y2 = ε[−(
1

4
a2 − η)ȳ1 + (s̄− 1

4
b2)ȳ2 + pȳ3

2 + pȳ2
1ȳ2],

where s̄ = −(β/ω + 1
2
K(CDo

+ CL1
)). By using the transformation

ȳ1 = r cos θ, ȳ2 = r sin θ, (4.3.4)

(4.3.3) becomes :

ṙ = εr[
1

4
b2 cos(2θ) − 1

4
a2 sin(2θ) + s̄+ pr2], (4.3.5)

θ̇ = ε[−1

4
a2 cos(2θ) − 1

4
b2 sin(2θ) + η].

The non trivial critical points of (4.3.5) are solutions of :
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1

4
b2 cos(2θ) − 1

4
a2 sin(2θ) + s̄+ pr2 = 0, (4.3.6)

−1

4
a2 cos(2θ) − 1

4
b2 sin(2θ) + η = 0.

By elimination of θ in (4.3.6) one obtains:

1

16
a2

2 +
1

16
b22 = η2 + (s̄+ pr2)2, (4.3.7)

or

r2 =
1

p
( − s̄±

√

1

16
a2

2 +
1

16
b22 − η2 ). (4.3.8)

Thus (4.3.5) has only one critical point i.e. the origin if 1
16
a2

2 + 1
16
b22 < η2, implying

that (4.3.3) has only one critical point. In case 1
16
a2

2 + 1
16
b22 > η2 (4.3.5) may have

three or five critical points. To evaluate the stability of these critical points one can
linearize the system around each critical point. Jacobi’s matrix of (4.3.5) evaluated
at its critical point (ro, θo) is





2pr2
o −1

2
ro(b2 sin 2θo + a2 cos 2θo)

0 2s̄+ 2pr2
o



 . (4.3.9)

The eigenvalues of (4.3.9) are

λ1 = 2pr2
o and λ2 = 2s̄+ 2pr2

o.

If for instance a2 = 0.6 or a2 = 4, b2 = 0, η = 0, CL3
= 2, CL1

= −6, CDo
=

1/2, β/ω = 2 and K = 1 five or three critical points are found respectively, and
these phase portraits of system (4.3.3) are given in Figure 4.4a, 4.4b. In Figure 4.4b
there are two stable critical points corresponding with two stable periodic solution
of (4.3.1) having equal amplitudes but a phase difference of π.
In case that the detuning parameter, η, is not equal to zero, for instance η = 0.9 and
η = 1.2, these phase portraits are depicted in Figure 4.5a and 4.5b. In these phase
portraits the value of a2 is 4. We can observe that the variation of the detuning
parameter η, leads to a change in the number of the critical points, and when η > 1
a limit cycle occurs. The change in the number of the critical points can be easily
understood by evaluating formula (4.3.8). In that case the formula (4.3.8) become :

r2 = −32

15
( − 3

4
±
√

1 − η2 ). (4.3.10)

The graph of r as a function of η is depicted in Figure 4.6. If 0 <
√

1 − η2 < 3
4

then we obtain four values of r. This results implies that equation (4.3.3) has five
critical points as the origin is also a critical point. If

√

1 − η2 = 3
4

then three values

of r are obtained (one of them is zero) and if 3
4
<
√

1 − η2 < 1 then we obtain two
values for r.
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Figure 4.6: Relation between r and η of formula (4.3.10).

4.3.2 Constant mass and varying position of water ridge

Secondly, we consider the case that the position of the ridge of water varies in time
and that there is no mass variation due to the rain, i.e. a2 = b2 = 0, implying that
the mass flow of rain water hitting the cylinder is equal to the mass flow of rain water
which is blown off the cylinder. As is known f(t) = f(τ/ω) = c1 cos(τ) + d1 sin(τ)
can be written as A cos(τ + ψo). It is no essential limitation to put ψo = 0 in other
words c1 6= 0, d1 = 0. In this case (4.3.2) becomes :

˙̄y1 = ε[(s+
1

4
c̄2)ȳ1 − ηȳ2 − c1(2q +

1

12
c̄o −

1

24
c̄2)ȳ1ȳ2 (4.3.11)

+(p− 1

16
c̄o +

1

24
c̄2)ȳ

3
1 + (p− 1

16
c̄o)ȳ1ȳ

2
2],

˙̄y2 = ε[−1

2
KCL1

c1 −
1

8
c1c̄o + ηȳ1 + (s− 1

4
c̄2)ȳ2

−c1(q +
1

24
c̄o −

1

48
c̄2)ȳ

2
1 − c1(3q +

1

12
c̄o +

1

48
c̄2)ȳ

2
2

+(p− 1

16
c̄o −

1

24
c̄2)ȳ

3
2 + (p− 1

16
c̄o)ȳ

2
1ȳ2],

where c̄o = c̄2 = 3
2
c21KCL3

. One can observe that when η = 0, ȳ1 = 0 is a solution
of the first equation of (4.3.11). Thus to find the critical points of (4.3.11) one can
substitute ȳ1 = 0 into the second equation of (4.3.11) and the result is a cubical
equation in ȳ2. If for instance CL3

= 2, CL1
= −6, CDo

= 1/2, β/ω = 2, K = 1 and
c1 = A the relation between A and ȳ2 is depicted in Figure 4.7a. Clearly when A
varies from 0 to 1 the number of real zeros of the cubical equation for ȳ2 varies from
3 to 2 and finally to 1, and similar results for the critical points of (4.3.11). For
A = 0.1 and the values of the other parameters as given above, the phase portrait
of (4.3.11) is shown in Figure 4.7b. The coordinates of the critical points in Figure
4.7b correspond with the values of ȳ2 along line A = 0.1 in Figure 4.7a. From
Figure 4.7b one can observe that there are three critical points one stable and two
unstable. It follows that there are three periodic solutions in the original system:
one asymptotically stable and the others unstable. In the case that η 6= 0, ȳ1 = 0 is
not a solution of the first equation of (4.3.11). When η increases from η = 0 than
the three critical points (in Figure 4.7b) are moving into the positive direction of
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the ȳ1-axis as is shown in Figure 4.9a. Further, following Figure 4.8 when the value
of η is around 0.2 there will be a saddle node bifurcation and a limit cycle occurs.
The limit cycle corresponds with a modulated oscillation in the original system. For
more details one can consult [29].

4.3.3 Mass and position of water ridge vary both with time

Now we discuss the situation that both effects are included. The effect of the varying
position of the ridge of water is indicated by the parameters c1 and d1, and the effect
of the varying mass is indicated by a2 and b2. By observing system (4.3.2) it follows
that a2 and b2 affect only the coefficients of the linear terms of the system. Hence by
varying a2 and b2 the structure of the solutions near the origin may vary. However
c1 and d1 affect both the coefficients of the linear as the non linear terms and hence
this variation has a local and non-local influence on the behaviour of the solutions.
Clearly the coefficients of the non-linear terms define the structure of the solutions
of the critical points away from the origin implying their non-local relevance. Note
that s depends on c1 and d1 and are involved in some of the coefficients of the linear
terms. We study the situation that both effects are included in two ways, the first
one is keeping a2 and b2 fixed and vary c1 and d1, and the other one is keeping c1
and d1 fixed and vary a2 and b2. It is known that f(t) = f(τ/ω) = c1 cos τ + d1 sin τ
can be written as A cos(τ + ψo). It is no essential limitation to put ψo = 0 in other
words c1 6= 0, d1 = 0, which reduces system (4.3.2) to :

˙̄y1 = ε[(s̄+
1

4
b2 −

3

8
KCL3

c21)ȳ1 + (−1

4
a2 − η)ȳ2 + c1(2q + (4.3.12)

1

16
KCL3

c21)ȳ1ȳ2 + (p− 1

32
KCL3

c21)ȳ
3
1 + (p− 3

32
KCL3

c21)ȳ1ȳ
2
2],

˙̄y2 = ε[−1

2
KCL1

c1 −
3

8
KCL3

c31 + (−1

4
a2 + η)ȳ1 + (s̄− 1

4
b2 −

9

8
KCL3

c21)ȳ2 − c1(q +
1

32
KCL3

c21)ȳ
2
1 − c1(3q +

5

32
KCL3

c21)ȳ
2
2 +

(p− 5

32
KCL3

c21)ȳ
3
2 + (p− 3

32
KCL3

c21)ȳ
2
1 ȳ2].

The critical points of (4.3.12) for relevant values of the coefficients can be analyzed
by using a Gröbner basis algorithm. Keep all parameters fixed except c1 = A, for
instance a2 = 4, b2 = 0, η = 0, CL3

= 2, CL1
= −6, CDo

= 1/2, β/ω = 2 and K = 1.
Then one can obtain a relation between A and ȳ1, ȳ2 as shown in Figure 4.10. The
number of critical points of (4.3.12) varies from three to one if A varies from 0 to
1 and the phase portraits are depicted in Figure 4.11a, 4.11b, 4.11c and 4.11d for
several values of A. In Figure 4.9 the vertical axis is ȳ2 and the horizontal axis is ȳ1.
The coordinates of the critical points in Figure 4.11 correspond with the value of ȳ1

and ȳ2 in Figure 4.10 for the given value of A. Corresponding (parts of) curves in
Figure 4.10a, 4.10b are indicated with S1, U , and S2 where S stands for stable and
U stands for unstable. If for example A = 0.1 the coordinates of the stable critical
point (ȳ1, ȳ2) follow from Figure 4.10a by using the upper S2 curve to obtain ȳ1 and
from Figure 4.10b the lower S2 curve to obtain ȳ2. Further one can observe that a
saddle-node bifurcation occurs for A in the neighbourhood of 0.52.
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Further we study the situation c1 = A = 0.1, d1 = 0 and vary a2 with b2 = 0. By
keeping the other parameters fixed as before implying that only a2 varies in equation
(4.3.12), then by using the Gröbner basis algorithm one can find the number of
critical points as shown in Figure 4.12a, 4.12b. From the diagram in Figure 4.12a
one can observe that the number of critical points varies as follows

3 → 4 → 5 → 4 → 3,

when a2 varies from 0 to 5. For example when a2 = 4 the number of critical points
is three. The phase portraits are depicted in Figure 4.13 for several values of a2. In
Figure 4.13 the vertical axis is ȳ2 and the horizontal axis is ȳ1.

In comparing the phase portraits in Figures 4.11 and 4.13 one can verify that
Figure 4.11b and Figure 4.13d are qualitatively equivalent although the values of
a2 differ : 4 in Figure 4.11b and 1.3 in Figure 4.13d. This is in accordance with
the qualitative behaviour of the critical points in Figures 4.12a, 4.12b for a2 > 1.3.
Clearly in both phase portraits there are two stable critical points corresponding with
stable periodic solutions with approximately the same amplitude but with different
phases. Increasing A in Figure 4.11 and decreasing a2 in Figure 4.13 leads to Figures
4.11d and 4.13a with one stable critical point. However, the phase portraits are
qualitatively rather different.

Finally the number and the stability of the critical points of system (4.3.12) for
several values of A and a2 are summarized in Table 4.1. In general the variation
of the position of the water ridge and the variation of the mass of rain water on
the oscillator give different effects to the system. The presence of the variation of
the position of the water ridge in the system implies that the origin is not a critical
point of the system. In other words the system does not have a trivial solution.
Further, if we increase the amplitude of the variation of the position of the water
ridge then the system has only one stable critical point. However, if we increase the
amplitude of the variation of the mass of rain water on the oscillator then the system
can have three critical points of which two are stable and one unstable. Considering
the magnitude of the amplitude of the two variations, it seems that in a number of
cases the variation of the position of the water ridge leads to bifurcation of critical
points. In Figure 4.10c for example ( a2 = 4 and A = 0.5 ) the system has three
critical points and in Figure 4.11d ( a2 = 4 and A = 0.8 ) the system has only one
stable critical point, thus between A = 0.5 and A = 0.8 a saddle node bifurcation
occurs. Because a critical point corresponds with a periodic solution in the original
system then according to the Figure 4.11c the original system has three periodic
solutions, two stable and one unstable. The influence of increasing the amplitude of
the position of the water ridge of the system is that the two critical points vanish
due to saddle node bifurcation and only one stable critical point remains.

The results which are described in Table 4.1 do not include the influence of the
detuning parameter η. Now, we will see the effect of the detuning parameter η by
keeping all other parameters fixed. When the value of η is ”large” then we will have
in the phase plane of equation (4.3.12) an unstable critical point and a stable limit
cycle around this point. For instance, when we fix the parameters, a2 = 4, b2 = 0,
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Table 4.1: The number of critical points and their stability of system (4.3.12) for several
values of A and a2, where A = the amplitude of the variation of the position
of the water ridge, a2 = the amplitude of the variation of the mass of rain
water, s = stable and u = unstable, c.p.= critical point, o.n.s.=origin is not
a solution.

η = 0, CL3
= 2

CL1
= −6

CDo
= 1/2 A = 0 A = 0.1 A = 0.14 A = 0.5 A = 0.8

β/ω = 2, K = 1
b2 = 0, d1 = 0

Origin is an o.n.s. o.n.s. o.n.s. o.n.s.
unstable node.

a2 = 0
Infinitely 3 c. p. saddle 1s c.p. 1s c.p.

many (1s, 2u) node
stable c.p. bifur-
on a circle. cation.
Origin is an o.n.s. o.n.s. o.n.s. o.n.s.

unstable node.
a2 = 0.6

5 c.p. 3 c.p. 1s c.p. 1s c.p. 1s c.p.
(2s, 3u) (1s, 2u)

Origin is an o.n.s. o.n.s. o.n.s. o.n.s.
unstable node.

a2 = 0.9
5 c.p. 5 c.p. 1s c.p. 1s c.p. 1s c.p.

(2s, 3u) (2s, 3u)
Origin is an o.n.s. o.n.s. o.n.s. o.n.s.

unstable node.
a2 = 1.3

5 c.p. 3 c.p. 3 c.p. 1s c.p. 1s c.p.
(2s, 3u) (2s, 1u) (2s, 1u)

Origin is a o.n.s. o.n.s. o.n.s. o.n.s.
saddle point.

a2 = 4
3 c.p. 3 c.p. 3 c.p. 3 c.p. 1s c.p.

(2s, 1u) (2s, 1u) (2s, 1u) (2s, 1u)

CL3
= 2, CL1

= −6, CDo
= 1/2, β/ω = 2, K = 1 and A = 0.1 and when we vary

η we will find the following. When η = 0 the phase portrait is shown in Figure
4.14a. By increasing η the two critical points come closer to each other and finally
collapse when the value of η is between 0.8 and 1 (see Figure 4.14b and 4.14c).
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This phenomenon is known as a saddle node bifurcation. When the values of η are
between 1.24 and 1.25 the Hopf bifurcation occurs, initiating the occurrence of a
limit cycle. For η = 2 the phase portrait is given in Figure 4.14d.

4.4 Conclusions

From the model equation describing the interaction of a wind-field containing rain
drops and a simple oscillator it follows that both the time-varying mass of rain drops
attached to the oscillator and the time-varying lift and drag force coefficients are
mechanisms leading to an unstable equilibrium position. From physical point of
view it can be understood that regular adding and removing of a marginal quantity
of raindrops attached to a mass spring system defined as a Hamiltonian system, may
lead to an unstable equilibrium.
On the other hand the time varying position of the water ridge leads to time varying
lift and drag forces as an instability mechanism. When the position of the water
ridge is fixed (A = 0, Figure 4.11a) the unstable equilibrium position as evolution
of three unstable critical points and two stable critical points corresponding with
two periodic solutions are found. In absence of variation of mass of rain water on
the oscillator (a2 = 0, Figure 4.13a) only one stable critical point i.e. one periodic
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solution is found. Apparently the first mechanism displays a certain symmetry
which the second mechanism does not show. In general the variation of position of
the water ridge and the variation of mass of rain water on the oscillator give different
effects to the system. Increasing the amplitude of the variation of the position of
the water ridge it turns out that the system has one stable periodic solution, but
when the amplitude of the variation of the mass of rain water increases the system
will have three periodic solutions ( two stable and one unstable). Variations of the
detuning parameter will lead to saddle node and Hopf bifurcations in the system.
From a practical point of view one may conclude that in order to avoid instabilities
one should design the oscillator in such a way that rain water accumulation and
variation is not be possible.

4.5 Appendix

To illustrate what a Gröbner basis algorithm is, one can consider as an example the
following system of linear equations:

x + y − 2z = 0,
2x − y + 5z = 0,
6x + z = 0.

(4.5.13)

By using Gauss elimination one obtains as an equivalent system ( that is, a system
which has the same set of solutions)

x + y − 2z = 0,
3x + 3z = 0,

− 5z = 0,
(4.5.14)

and this system is ”easier” to solve than the system (4.5.13). Now the problem is if
we have a system of equations with nonlinear polynomials then how do we obtain
an equivalent system which is ”easier” to solve. To find this system turns out to be
equivalent with finding a Gröbner basis.
It should be observed that system (4.5.13) can be written as f1 = 0, f2 = 0, f3 = 0,
where f1 = x+ y− 2z, f2 = 2x− y+ 5z and f3 = 6x+ z are in k[x, y, z], that is, the
set of all polynomials in the variables x, y, z with coefficients in the field k (in this
case k = R the set of all real numbers). k[x, y, z] is a commutative ring under the
operations of addition and multiplication of polynomials. The set

< f1, f2, f3 >= {u1f1 + u2f2 + u3f3|u1, u2, u3 ∈ k[x, y, z]}
is an ideal in k[x, y, z]. If we denote f4 = 3x + 3z and f5 = −5z then < f1, f2, f3 >
= < f1, f4, f5 > because f4 = f1 + f2 and f5 = −2f3 + f4.
Furthermore, for a given f ∈ k[x, y, z] we define the variety V (f) to be the set of all
solutions of the equation f = 0, i. e.

V (f) = {(x, y, z) ∈ R3|f = 0}.
The variety V (f1, f2) is the set of all solutions of the system of equations f1 = 0,
f2 = 0. More generally, if S ⊆ k[x, y, z] then the variety V (S) is

V (S) = {(x, y, z) ∈ R3|f = 0 for all f ∈ S}.
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Evidently V (f1, f2, f3) = V (f1, f4, f5) and V (f1, f2, f3) = V (< f1, f2, f3 >). Gener-
ally, if we have an ideal I in k[x1, x2, · · · , xn] ( a set of all polynomials in n variables)
which is generated by f1, f2, · · · , fm then V (I) = V (f1, f2, · · · , fm).
An ideal may have many different generating sets with different number of elements.
Suppose I =< f1, f2, · · · , fm > = < f̄1, f̄2, · · · , f̄l > then V (f1, f2, · · · , fm) = V (I) =
V (f̄1, f̄2, · · · , f̄l). It means that the variety is determined by an ideal and not by a
particular set of equations. Thus the problem above becomes : ”if we have an ideal
I =< f1, f2, · · · , fr > how can we find another generating set for the ideal I such
that we can ”easier” evaluate its variety”. Such a generating set will be called a
Gröbner basis for the ideal I. To find it we need an ”ordering” in k[x1, x2, · · · , xn].
The existence of the finite generating sets of an ideal I in k[x1, x2, · · · , xn] is guaran-
teed by Hilbert’s basis theorem, i. e. if I is any ideal in the ring k[x1, x2, · · · , xn] then
there exist polynomials f1, f2, · · · , fs ∈ k[x1, x2, · · · , xn] such that I =< f1, f2, · · · , fs >.
As is well known, k[x1, x2, · · · , xn] is a vector space over the field k with a basis set
Tn, of all power products,

Tn = {xα1

1 x
α2

2 · · ·xαn

n |αi ∈ N = {0, 1, 2, · · ·}, i = 1, 2, · · · , n}.

For simplicity, xα1

1 xα2

2 · · ·xαn
n is denoted as xα, where α = (α1, α2, · · · , αn) ∈ Nn.

Many definitions of the order can be defined on Tn, one of them is a lexicographical
order (which is used in this thesis).
Definition 1 . The lexicographical order on Tn with x1 > x2 > · · · > xn is defined
as follows: For α = (α1, α2, · · · , αn) and β = (β1, β2, · · · , βn) ∈ Nn, xα < xβ if and
only if the first coordinates αi and βi in α and β from the left, which are different,
satisfy αi < βi.
We have an order on k[x1, x2, · · · , xn] if we have an order on Tn. Thus, for example
in the case of two variables x1, x2 with x1 > x2 then in k[x1, x2] we have

1 < x2 < x2
2 < x3

2 < · · · < x1 < x2x1 < x2
2x1 < · · ·x2

1 < · · · .

If we write a polynomial f in k[x1, x2, · · · , xn] as

f = a1x
α1 + a2x

α2 , · · · + asx
αs,

where 0 6= a1 ∈ k and xα1 > xα2 > · · · > xαs, xαi ∈ Tn, then we define

• lp(f) = xα1 , the leading power product of f ,

• lc(f) = a1, the leading coefficient of f ,

• lt(f) = a1x
α1 , the leading term of f .

Definition 2 . Let f, g, h be polynomials in k[x1, x2, · · · , xn] with g 6= 0. Polynomial
f reduces to h modulo g in one step, denoted, f g h, if and only if lp(g) divides a
non-zero term X that appears in f and h = f − X

lt(g)
g.

Definition 3 . Let f, h and f1, f2, · · · , fs be polynomials in k[x1, x2, · · · , xn] with fi 6=
0, i = 1, 2, · · · , s and F = {f1, f2, · · · , fs}. The polynomial f reduces to h modulo
F , denoted, f F

+
h if and only if there exists a sequence of indices i1, i2, · · · , it in
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{1, 2, · · · , s} and a sequence of polynomials h1, h2, · · · , ht−1 in k[x1, x2, · · · , xn] such
that

f
fi1 h1

fi2 h2
fi3 · · · fit−1 ht−1

fit h.

Definition 4 . A polynomial r is called reduced with respect to F = {f1, f2, · · · , fs}
if r = 0 or no power product that appears in r is divisible by any one of the lp(fi),
i = 1, 2, · · · , s. Furthermore, if f F

+
r and r reduced with respect to F , then r is a

remainder for f with respect to F .
Now we define what is a Gröbner basis.
Definition 5 . Let I be an ideal in k[x1, x2, · · · , xn]. G = {g1, g2, · · · , gt} ⊆ I is called
a Gröbner basis for I if and only if for all f ∈ I (f 6= 0) there exist i ∈ {1, 2, · · · , t}
such that lp(gi) divides lp(f).
Definition 6 . Let f, g be non-zero polynomials in k[x1, x2, · · · , xn] and
L = lcm(lp(f), lp(g)) be a least common multiple of lp(f) and lp(g). The polynomial

S(f, g) =
L

lt(f)
f − L

lt(g)
g

is called the S-polynomial of f and g.
Theorem(Buchberger). Let G = {g1, g2, · · · , gt} be a set of non-zero polynomials in
k[x1, x2, · · · , xn]. Then G is a Gröbner basis for the ideal I =< g1, g2, · · · , gt > if
and only if for all i 6= j, S(gi, gj)

G
+
0.

The Gröbner basis can be found by the following algorithm (called Buchberger’s
Algorithm):
INPUT : F = {f1, f2, · · · , fs} ⊂ k[x1, x2, · · · , xn], fi 6= 0 for all i ∈ {1, 2, · · · , s}
OUTPUT : G = {g1, g2, · · · , gt} a Gröbner basis for ideal < f1, f2, · · · , fs >
INITIALIZATION : G := F , G = { {fi, fj} | fi 6= fj ∈ G}
WHILE G 6= ∅ DO

• Choose any {f, g} ∈ G

• G := G − {{f, g}}

• S(f, g) G
+
h, where h is reduced with respect to G

IF h 6= 0 THEN

• G := G ∪ { {u, h} | for all u ∈ G}

• G := G ∪ {h}

Thus if one gives a set of non-zero polynomials {f1, f2, · · · , fs} then based on Buch-
berger’s algorithm one can produce a Gröbner basis for the ideal < f1, f2, · · · , fs >.
Finally the existence of a Gröbner basis is guaranteed by Buchberger’s theorem, i.
e. :
Theorem. Given F = {f1, f2, · · · , fs} with fi 6= 0 for all i. Buchberger’s algorithm
will produce a Gröbner basis for the ideal I =< f1, f2, · · · , fs >.
Example. Consider equation (4.3.12) Keep all parameters fixed except c1 = A, for
instance a2 = 4, b2 = 0, η = 0, CL3

= 2, CL1
= −6, CDo

= 1/2, β/ω = 2 and K = 1,
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then equation (4.3.12) becomes:

˙̄y1 = ε[(
3

4
− 3

4
A2)ȳ1 −

6

5
ȳ2 − (

3

4
A+

1

8
A3)ȳ1ȳ2 − (

15

32
+

1

8
A2)ȳ3

1 − (4.5.15)

(
15

32
+

3

16
A2)ȳ1ȳ

2
2],

˙̄y2 = ε[3A− 3

8
A3 − 4

5
ȳ1 + (

3

4
− 9

4
A2)ȳ2 − (

3

8
+

1

16
A2)ȳ2

1 −

(
9

8
A+

5

48
A3)ȳ2

2 − (
15

32
+

5

48
A2)ȳ3

2 − (
5

32
+

3

16
A2)ȳ2

1ȳ2].

For simplicity we will write x for ȳ1 and y for ȳ2. So equation (4.5.15) can be written
as

ẋ = εf1, ẏ = εf2, (4.5.16)

where

f1 = (
3

4
− 3

4
A2)x− 6

5
y − (

3

4
A+

1

8
A3)xy − (

15

32
+

1

8
A2)x3 −

(
15

32
+

3

16
A2)xy2,

f2 = 3A− 3

8
A3 − 4

5
x + (

3

4
− 9

4
A2)y − (

3

8
+

1

16
A2)x2 −

(
9

8
A+

5

48
A3)y2 − (

15

32
+

5

48
A2)y3 − (

5

32
+

3

16
A2)x2y.

To find all critical points of equation (4.5.15) is equivalent to solve the system of
equations f1 = 0, f2 = 0 or to find the variety V (f1, f2). Now we consider the ideal I
which is generated by f1 and f2, that is, I =< f1, f2 >. By using the Gröbner basis
algorithm in the software package Maple with ordering x > y, we obtain a Gröbner
basis of ideal I, that is, {f̄1, f̄2}, where

f̄1 = −149299200 y3 + 496125 y9A4 − 46448640 y + 11560A10y9 +

431550A6y9 + 1111283712A4y + 123420A8y9 − 597196800A5 +

16329600 y6A3 − 36920448A7 + 15968016A9 + 93312000 y5 +

159751764 y3A6 + 42840A12y7 + 27880A13y6 + 9600A14y5 +

1440A15y4 − 2068632 y2A9 + 60480 y3A14 + 5145120 y2A11 +

75064320A3y4 + 51763968A4y3 + 205641504A5y4 + 238878720A−
6562944A10y + 575424A12y + 245520A13y4 − 103680A13y2 +

769800672A6y − 7597800A4y7 + 7721568A10y3 − 17721180A5y6 +

123310080A4y5 − 1859436A7y6 − 182448A11y4 + 89370360A8y3 −
249540048A7y2 + 57378816A7y4 + 864252A10y7 +

5184A15y2 + 872544A11y6 + 577872A12y5 + 2552040A6y7 +

3865320A8y7 + 1697040A10y5 − 9384336A8y5 + 4068576A9y6 −
489888 y3A12 + 82944000A2y5 − 1643760A9y4 − 1039564800 yA2 +

688435200 y3A2 + 580939776 y2A3 − 776355840 y2A+ 70655328 yA8 −
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320924160A5y2 − 1065000960A3 + 2778300A5y8 + 298598400Ay4 +

34680A11y8 + 2069550A7y8 + 485928A9y8 − 1716336A6y5,

f̄2 = bx + cg(y),

with g(y) a polynomial in y; b and c depend on A.
We know that V (f1, f2) = V (f̄1, f̄2). Fix A, then f̄1 becomes a polynomial in the
single variable y. To find the zeros of the polynomial f̄1 is then relatively simple.
Substituting these values into f̄2 = bx + cg(y) = 0, then gives x. So the variety
V (f̄1, f̄2) has been determined. Furthermore, the relation between A and y can be
given by implicitly plotting f̄1(A, y) = 0. The result is depicted in Figure 4.10b. For
more details about the Gröbner basis one can consult [1].



Chapter 5

Rain-wind Induced Vibrations of a

Seesaw Oscillator †

Abstract. In this chapter the rain-wind induced vibrations of a seesaw oscillator
will be studied. The model equations will be derived under the assumption that the
position of the rivulet of water on the oscillator varies in time. The eigenfrequency
of the oscillator and the frequency of the movement of the water rivulet on the
oscillator are assumed to be close to each other. Several Hopf and saddle node
bifurcations will occur when the amplitude of the movement of the water rivulet on
the oscillator is varied.

5.1 Introduction

There are many examples of rain-wind induced vibrations of elastic structures such
as cables or bridges. The Erasmus bridge in Rotterdam and the Meikonishi bridge in
the Nagoya Harbor in Japan are examples of such elastic structures. The cables of
these bridge are stable under dry wind condition (no rain), but can become unstable
when it is raining (see also [13]). Another instability mechanism can be caused by
torsional flutter as for instance described in [21]. This instability mechanism might
have been the cause of the collapse of the Tacoma Narrows bridge. The first in-
stability mechanism can be described by spring type oscillators, and the torsional
instability mechanism can be modelled by seesaw type oscillators (see also [7, 8]). In
[7, 8] a rather complete analysis of the vibrations of a spring type oscillator and of
a seesaw type oscillator with a fixed position of the water-rivulet on the oscillators
has been presented. And in [29] an analysis for the spring oscillator has been given
when the position of the water ridge on the oscillator varies in time.
In this chapter the vibrations of a seesaw oscillator with a time-varying position of
a water ridge on the surface of the oscillator will be studied. In Figure 5.1 a sketch

†This chapter is a revised version of [12], On Rain-wind Induced Vibrations of a Seesaw Oscil-
lator, submitted for publication.
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is given of the circular cross-section of the seesaw oscillator with such a water ridge
(in black) on the surface. In fact the seesaw oscillator consists of a circular cylinder
connected to a rigid bar. At the other end of the bar a hinge-axis is connected such
that the bar-cylinder can rotate around this axis (see also Figure 5.1). It is assumed
that for each cross-section of the cylinder the time-varying position of the water
ridge is the same.
This chapter is organized as follows. In section 2 the equations describing the vibra-
tions of the seesaw oscillator will be derived. In section 3 and in section 4 the effect
of the amplitude of the variation in the position of the water rivulet will be studied
for different values of the parameters. Finally in section 5 some conclusions will be
drawn.

5.2 Derivation of the equation of motion

The angle θ, measured positive in clockwise direction, describes the angle between
the arm holding the cylinder and the horizontal line. The angle αs denotes the
angle between the rotation arm and a symmetry axis of the cylinder’s cross-section,
counted positive in clock wise direction, see Figure 5.1. Further, R is the distance
from the cylinder’s axis to the pivot O. It is assumed that a quasi-steady theory
can be used to model the windforces acting on the cylinder. The quasi-steady
theory implies that for the description of the dynamics of the elastic structure with
the flowing medium one may use data which describes the static situation. More
precisely one assumes that the fluid forces on the structure are determined solely
by the instantaneous resultant flow velocity [7, 31]. The aerodynamic moment M
exerted on the structure can be modeled by using the aerodynamic forces exerted
on the cylinder. A moment coefficient curve CM(α) for the structure will be used to
describe M .

flow

U
R

M

O

θ

α

αs

r
θR
.

U

Figure 5.1: The cross-section of the seesaw oscillator, the fluid flow with respect to the
cylinder, and the definitions of the angles α, αs, and θ.

In the dynamic situation the aerodynamic moment is assumed to be given by

M(α) =
1

2
ρ d l R U2

r CM(α), (5.2.1)
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where ρ is the density of air, d the diameter of the cylinder, l the length of the
cylinder and

α = αs + θ − arctan(
Rθ̇ cos θ

U −Rθ̇ sin θ
), (5.2.2)

the angle between the instantaneous velocity vector Ur of the flow relative to the
cylinder and the symmetry axis, measured positive in clockwise direction, and

U2
r = (U − Rθ̇ sin θ)2 + (Rθ̇ cos θ)2. (5.2.3)

The equation of motion is given by :

Iθ̈ + cθθ̇ + kθθ = M(α), (5.2.4)

where I is the structural moment of inertia, kθ > 0 the linear torsional spring con-
stant, and cθ > 0 the structural damping coefficient of the oscillator. Defining the
dimensionless parameters ω2

θ = kθ/I and µ = U/Rωθ and introducing the transfor-
mation τ = ωθt, the following equation is obtained from (5.2.4) :

d2θ

dτ 2
+

cθ
ωθI

dθ

dτ
+ θ =

ρdlR3

2I
(µ2 − 2µ

dθ

dτ
sin θ + (

dθ

dτ
)2)CM(α), (5.2.5)

where α = αs + θ − arctan(
dθ
dτ

cos θ

µ− dθ
dτ

sin θ
). By assuming that both damping and aerody-

namic moments are small, i.e. :

ρdlR3

2I
= ε,

cθ
ωθI

= 2βθε, (5.2.6)

where 0 < ε� 1 it follows from (5.2.5) that

d2θ

dτ 2
+ θ = ε[(µ2 − 2µ

dθ

dτ
sin θ + (

dθ

dτ
)2)CM(α) − 2βθ

dθ

dτ
]. (5.2.7)

A similar derivation of this equation also can be found in [7]. As described in [27]
the CM(α) curves may be obtained from wind tunnel experiments, and some typical
results obtained from measurements in a wind tunnel are sketched in Figure 5.2.
Now the CM(α) curves will be approximated by cubical polynomials in α near those
values of α for which aerodynamic instabilities occur, that is, near α = αo for which
CM(αo) = 0. So, it is assumed that

CM(α) = c1(α− αo) + c3(α− αo)
3, (5.2.8)

where c1 < 0 and c3 > 0. Further it is assumed that the position of the water ridge
on the oscillator varies in time according to the following formula

αs − αo = f(t) = A cos(ωt) = A cos(
ω

ωθ
τ), (5.2.9)

where A is an amplitude related to the position of the water ridge, and ω is the
frequency of the movement of the water ridge. By putting ω

ωθ
= Ω = 1 + εη, where
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0.1

−0.1

α o α

CM

π
2

Figure 5.2: The aerodynamic torsion coefficient CM (α).

η is a detuning parameter and by introducing the transformation Ωτ = σ it follows
that (5.2.7) can be rewritten in

d2θ

dσ2
+ Ω−2θ = ε[(

µ2

Ω2
− 2

µ

Ω

dθ

dσ
sin θ + (

dθ

dσ
)2)CM(α) − 2

βθ
Ω

dθ

dσ
] (5.2.10)

or in

d2θ

dσ2
+ θ = ε[(µ2 − 2µ

dθ

dσ
sin θ + (

dθ

dσ
)2)CM(α) − 2βθ

dθ

dσ
+ 2ηθ] +O(ε2) (5.2.11)

with

α− αo = A cos σ + θ − arctan(
dθ
dσ

cos θ

µΩ−1 − dθ
dσ

sin θ
). (5.2.12)

It should be observed that in (5.2.10) and in (5.2.11) it has been assumed that the
frequency ω of the position of the water ridge on the surface of the oscillator and
the frequency ωθ of the oscillator itself are close to each other. Furthermore, it is
assumed that θ and dθ

dσ
are small such that (5.2.12) can be expanded in a Taylor

series in θ and dθ
dσ

(around θ = 0 and dθ
dσ

= 0). Then by substituting (5.2.8) into
(5.2.11) and by setting

θ(σ) = y1(σ) cos(σ) + y2(σ) sin(σ), (5.2.13)

dθ(σ)

dσ
= −y1(σ) sin(σ) + y2(σ) cos(σ),

and by using the Taylor expansion of (5.2.12) a system of two first order ordinary
differential equations for y1 and y2 is obtained. In this system for y1 and y2 all terms
of degree four and higher are neglected. Then, by applying the first order averaging
method to the so-obtained equations for y1 and y2, one finally obtains

˙̄y1 = ε[(−µp1 − βθ)ȳ1 − µ2p1ȳ2 − 2µAp2ȳ
2
1 + 2µAp2ȳ

2
2 + (5.2.14)

2A(p2 − 3p5)ȳ1ȳ2 −
1

µ
(p3 + 3p4 +

1

2
po(9µ

2 + 4))ȳ3
1 −

(p3 + 6po)ȳ
3
2 − (p3 − 6po)ȳ

2
1ȳ2 −
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1

µ
(p3 + 3p4 −

1

2
po(9µ

2 − 12))ȳ1ȳ
2
2] − εηȳ2,

˙̄y2 = ε[µ2Ap1 + µ2(p1 + 12po)ȳ1 − (µ(p1 + 12po) + βθ)ȳ2 +

A(p2 + 9p5)ȳ
2
1 − A(3p2 + 3p5 + 2po)ȳ

2
2 − 4µA(p2 + po)ȳ1ȳ2 +

(p3 + 6po)ȳ
3
1 −

1

µ
(p3 + 3p4 +

1

2
po(9µ

2 + 20))ȳ3
2 −

1

µ
(p3 + 3p4 +

1

2
po(27µ2 + 6))ȳ2

1ȳ2 + (p3 + 18po)ȳ1ȳ
2
2] + εηȳ1,

where ȳ1 and ȳ2 are order ε accurate approximations of y1 and y2 respectively on
time-scales of order 1

ε
, and where

po =
1

16
c3A

2, p1 =
1

2
c1 +

3

8
c3A

2, p2 =
1

8
c1 +

3

8
c3 +

1

16
c3A

2,

p3 =
1

4
c1 +

3

8
c3 +

3

8
c3µ

2, p4 =
1

16
c1µ

2, p5 =
1

8
c3µ

2.

For a water ridge with a fixed position (that is, for f(t) ≡ 0 and so A = 0) system
(5.2.14) can be rewritten in a more simple form by introducing the polar coordinates
ȳ1 = r cosϕ and ȳ2 = r sinϕ, yielding

ṙ = εr[q1 − q2r
2], (5.2.15)

ϕ̇ = ε[η +
1

2
µ2c1 + p3r

2],

where q1 = −1
2
µc1 − βθ and q2 = 1

µ
(p3 + 3p4). It is obvious from (5.2.15) that a

limit cycle will occur when q1 and q2 have the same sign. When q1 and q2 have
different signs it is also obvious that no limit cycles will occur, and that the origin
can be the only critical point of (5.2.15). In the next two sections the influence of
the movement of the water ridge on the surface of the cylinder will be studied for
the following two cases : case I with q1 < 0 and q2 < 0 and case II with q1 < 0 and
q2 > 0.

5.3 Case I : q1 < 0 and q2 < 0

In this section the following choice for the parameters has been made µ = 1, c1 = −3,
c3 = 2, βθ = 1, η = 0 or η 6= 0 and A is a parameter. This choice turned out to be
representative for the behaviour of the solution of system (5.2.14), that is, for other
values of the parameters the behaviour of the solutions is more or less similar. Firstly
it is assumed that η = 0. It is obvious that the number of critical point of (5.2.14)
is a function of A. By using a Gröbner basis algorithm in the software package
Maple the relation between A and the critical points (ȳ1, ȳ2) of system (5.2.14) can
be determined, and is given in Figure 5.3. For some values of A the phase portraits
of the system (5.2.14) are given in Figure 5.4, where the horizontal axis the ȳ1-axis,
and the vertical axis is the ȳ2-axis. The label S and U in Figure 5.3 are related
to the stable and unstable critical points respectively. Part of the curve in Figure
5.3a with label U1 should be combined with that part of the curve in Figure 5.3b
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with label U1 and so on. The end points of each labeled curve are determined by
dȳi

dA
= ±∞. From Figure 5.3 and from Figure 5.4 it can be seen that the number

of critical points of system (5.2.14) varies when the value of A is varied. In fact for
increasing A the following can be observed :
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Figure 5.3: Critical points (ȳ1, ȳ2) of system (5.2.14) as function of A, where µ = 1,
c1 = −3, c3 = 2, βθ = 1 and η = 0.
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(1cp+ a stable limit cycle) → 2cp→ 3cp→ 4cp→ 5cp→ 4cp→
(3cp+ a stable limit cycle) → (2cp+ a stable limit cycle)

→ (1cp+ a stable limit cycle),
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where ’cp’ is an abbreviation for critical point(s). When A = 0 there is one unstable
critical point (the origin) and one stable limit cycle. By increasing A the limit cycle
will disappear, but for larger values of A it will re-appear. A stable or unstable
critical point corresponds with a stable or unstable periodic solution in the original
equation (5.2.11 ) and a limit cycle corresponds with a modulated oscillation in the
original equation.
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Now the effect of the detuning parameter will be studied, and the other param-
eters are kept fixed, that is, the following choice is made µ = 1, c1 = −3, c3 = 2,
βθ = 1, A = 0.1 and η is varied. It is obvious that the number of critical points of
system (5.2.14) will depend on η. Again by using the Gröbner basis algorithm the
dependence of the number of critical points on η can be determined and is given in
Figure 5.5. It can be observed from Figure 5.5 that the number of critical points
of system (5.2.14) now decreases from 3 to 1 when η increases from 0. The phase
portraits of system (5.2.14) for several values of η are given in Figure 5.6. It can
be observed from Figure 5.5 and Figure 5.6 that a saddle-node bifurcation occurs
when the value of η is around 0.125. For smaller values of η there will be 3 critical
points, and for larger values there will be one critical point and a limit cycle. For the
original equation (5.2.11) this implies that for 0 ≤ η < 0.125 three periodic solutions
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Figure 5.7: Critical points (ȳ1, ȳ2) of system (5.2.14) as a function of A where µ = 1,
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Figure 5.8: Critical points (ȳ1, ȳ2) of system (5.2.14) as a function of A where µ = 1,
c1 = −3, c3 = 2, βθ = 1 and η = 1.

will exist ( two unstable and one stable), that for η approximately equal to 0.125
a stable and an unstable periodic solution will coincide, and that for η larger than
0.125 one unstable periodic solution and a modulated solution will exist. The effect
of the detuning parameter η on the positions of the critical points in system (5.2.14)
can also be seen in Figure 5.7 and in Figure 5.8. In Figure 5.7 η taken to be equal
to 0.3, and the results on the position of the critical points can readily be compared
with those obtained in Figure 5.3 for η = 0.

5.4 Case II : q1 < 0 and q2 > 0

For A = 0 there is only one critical point (stable) of system (5.2.14) as has been
shown at the end of section 5.2. In this section the following choice for the parameters
has been made µ = 1, c1 = −2, c3 = 2, βθ = 2 and A is a parameter. By using
a Gröbner basis algorithm in the software package Maple the relation between A
and the critical points (ȳ1, ȳ2) of system (5.2.14) can be determined, and is given in
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Figure 5.9 for η = 0 and in Figure 5.10 for η = 3. Also for some values of A the
phase portraits of system (5.2.14) are given in Figure 5.11. The results as given in
these figures imply that for the given set of parameters only one critical point will
occur, which is stable. For the original equation (5.2.11) these results imply that a
stable periodic solution will exist.
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5.5 Conclusion

In this chapter the rain-wind induced vibration of a seesaw oscillator have been
studied. The model equations have been derived under the assumption that the
position of the rivulet of water on the oscillator varies harmonically in time. The
eigenfrequency of the oscillator and the frequency of the movement of the water
rivulet on the oscillator are assumed to be close to each other. In case I that is in
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case that the system has a limit cycle when A = 0, several Hopf and saddle-node
bifurcations occur when A (the amplitude of the movement of the water rivulet on
the oscillator) and η (a detuning parameter) are varied. When η is large a limit
cycle occurs and it corresponds with a modulated oscillation in the original system.
However, in case II no bifurcation occurs when A and η are varied. For some sets of
the parameters in the model equations the existence and the stability of the periodic
or of the modulated vibrations have been established.
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Summary

In this thesis simple mathematical models are derived to describe the rain-wind
induced vibrations of elastic structures such as cables or bridges. All models will be
described by weakly nonlinear ordinary differential equations with time dependent
coefficients. This time dependence is due to the assumption that the position and
the mass of the water rivulet on the surface of the elastic structure varies in time.
As models for these elastic structures oscillators of spring-type or of see-saw type
are chosen. First order and higher order averaging techniques, strained parameter
methods, and numerical methods are used to study the existence and the stability
of time-periodic vibrations or of modulated vibrations for these oscillators. Several
types of bifurcations will occur when for instance the amplitude of the position of
the water rivulet on the surface of the oscillator is varied.
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Samenvatting

In dit proefschrift worden eenvoudige wiskundige modellen afgeleid om regen- en
wind-gëınduceerde trillingen van elastische strukturen, zoals kabels en bruggen, te
beschrijven. Alle modellen worden beschreven door zwak niet-lineaire normale dif-
ferentiaalvergelijkingen met tijdsafhankelijke coëfficiënten. Deze tijdsafhankelijkheid
komt voort uit de aanname dat de positie en de massa van waterstroompjes aan het
oppervlak van de strukturen variëren in de tijd. Als model voor elastische struk-
turen zijn oscillatoren van het veer- en het wip (“see-saw”) -type gekozen. Om het
bestaan en de stabiliteit van oplossingen van periodieke of gemoduleerde trillingen
van de oscillatoren te bestuderen, worden eerste- en hogere-orde middelingstech-
nieken, “strained parameter”- en numerieke methoden gebruikt. Verschillende typen
bifurcaties treden op wanneer bijvoorbeeld de amplitude van de positie van het wa-
terstroompje op het oppervlak van de oscillator wordt gevariëerd.
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